PHYSICAL REVIEW E 67, 031502 (2003
Hexatic undulations in curved geometries
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We discuss the influence of two-dimensional hexatic order on capillary waves and undulation modes in
spherical and cylindrical geometries. In planar geometries, extended bond-orientational order has only a minor
effect on the fluctuations of liquid surfaces or lipid bilayers. However, in curved geometries, the long-
wavelength spectrum of these ripples is altered. We calculate this frequency shift and discuss applications to
spherical vesicles, liquid metal droplets, bubbles and cylindrical jets coated with surface-active molecules, and
to multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the
threshold for the fission instability of charged droplets and bubbles, and for the Plateau-Rayleigh instability of
liquid jets.
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I. INTRODUCTION been found in a variety of other systems, including free
standing liquid crystal film$9] and Langmuir-Blodgett sur-

In two dimensions the melting from a crystal to an isotro-factant monolayer$10]. A hexatic-to-liquid transition has
pic liquid can be a two-stage procedq, driven by the se- been observed in two-dimensional magnetic bubble arrays
quential unbinding of dislocatiorj4,2] and disclination$l].  [11]. Furthermore, there is strong support for two-stage con-
At low temperatured <T, dislocations are suppressed duetinuous melting from recent experiments on two-dimensional
to their cost in elastic energy. However, their free energycolloidal crystals[12,13. In this case, the colloids can be
decreases with increasing temperature. At a temperdture directly imaged by video microscopy, thus allowing a precise
=Ty, the quasi-long-ranged translational order of the crystest of the theory.
tal is destroyed by the dissociation of dislocation pairs. This The modest time scales available even on the fastest com-
transition leads to an intervening hexatic phase, which stilputers make equilibration in Monte Carlo or molecular dy-
exhibits extended orientational correlations. The unbindinghamics simulations of two-dimensional melting difficult.
of disclination pairs sets in at a higher temperaflireT; . In However, there is now evidence via computer simulations for
this second transition the quasi-long-ranged orientational oreontinuous melting and a narrow sliver of hexatic phase for
der of the hexatic phase is destroyed, leading to an isotropigard diskg14] and for particles interacting with a repulsive
liquid. This mechanism allows the melting transition to be 1/r1? potential[15]. There are also indications of defect me-
continuous in contrast to the first-order meltif@jrectly to  diated melting transitions for the familiar Lennard-Jones
an isotropic fluid predicted by Landal3]. 6-12 pair potentia 16].

Several experimental systems have illuminated the nature In the above experiments, order was typically probed via
of two-dimensional(2D) melting. A nearly ideal system is diffraction or by direct measurement of correlation functions
electrons on heliunj4—6]. The electrons are trapped on the in real space. It is difficult to use these methods, however,
surface of liquid helium by a submerged, positively chargedvhen hexatic order is present on a curved surface, such as a
capacitor plate. Their separations are rarely less thagphere or a cylinder. Examples where hexatic and crystalline
1000 A, so the in-plane physics is that of classical particlesrder might be present on a sphere include “liposomes,” i.e.,
with a repulsive I/ potential. The liquid helium does not closed vesicles composed of lipid bilaygds,18], the sur-
freeze at low temperatures, so it is possible to cool the eledace of liquid metal droplets confined in Paul trda8], and
trons on this liquid substrate well below a sharply defined 2Dmultielectron bubbles submerged in liquid heliGig0].
freezing temperatureT(,~0.5 K) [4]. On the theoretical Hexatic order in spherical liposomes seems likely because
side, important parameters such as the 2D shear modulus afidt two-dimensional planar layers of lipids such as DMPC
dislocation core energy are easily calculated with this poten¢dimyristoyl phosphatidylcholing 21], similar to free stand-
tial [7]. Computer simulation$8] reveal a shear modulus ing liquid crystal films[22], can exist in a variety of states
which appears to drop to zero at the melting temperaturewith different degrees of positional and orientational order.
Measurements of the shear modul@$and specific hedi5] Examples include fluid, smecti€, hexatic and crystalline
are consistentwith a continuous dislocation mediated melt- phases.
ing transition. However, in these experiments it is difficult to  Curved hexatic order may also arise on droplets. Celestini
determine experimentally if hexatic order and a disclinationet al. [23] have found evidence from computer simulations
unbinding transition are in fact present abovg. for extended orientational correlations at the flat surface of

However, experimental evidence for hexatic ordes  supercooled heavy noble liquid metals, such as Au, Pt, or Ir.

These metals have a general tendency to reduce the inter-

atomic distance at the surface. Upon supercooling this effect

*Present address: Institut Curie, UMR 168, 26rue d'Ulm,is enhanced, leading, generally to a two-dimensional crystal-
F-75248 Paris Caex 05, France. line surface layer. Under suitable cooling conditions, hexatic
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order can also appear on the free surface of undercooled K4(T) !
liquid metals[23]. Surface hexatic order may also occur on i
water droplets coated with surface-active molecules, given i
that there are already extensive observations of this type of |
order in Langmuir-Blodgett monolayef40]. i
Finally, one might expect spherical hexatic and crystalline |
order in multielectron bubbles in helium. These arise when |
the helium surface undergoes an electrohydrodynamic insta- :
bility at high electron densities. The surface then develops a i
regular array of dimples, each containing® 1€lectrons or i
more. As the electric field increases these dimples deepen i
until eventually electrons break through the interface. After i
subduction, large numbers of electrons Y200) then coat :
the inside wall of a large (10-10@m radiug sphere of '
helium vapor. These multielectron bubbles have been ob- T it T
served to move through the helium after their creation above FIG. 1. The hexatic stiffnesk , as function of the temperature
a prOtrUdm.g anpdé20,24,2&3. They are stable at low elec- T. K, diverges neaiT,, and jumps discontinuously to zero &t
tron densities since the Coulomb pressure can be compe, lims_1 Ka(T)=72sT/ 7 [1,31].
sated by the surface tension of the helium liquid-vapor inter- i
face. However, if the electron density becomes too high th%ubbles(Sec. IV). As a last application, we investigate in
electrostatic repulsion exceeds the balancing force and thgec v the influence of hexatic order on the undulations of

bubble undergoes fissid26,27. , , spherical vesicles. Finally, in Sec. VI, we elaborate in detail
One might hope that bond-orientational order in a flatyp, experimental consequences of our work.

membrane or an interface could be detected by its effects on
the dynamics of undulation modes or capillary waves. Un-
fortunately, hexatic order couples only to tBaussiancur-
vature[28], which vanishes for a simple sine wave deforma-

tion of a flat membrane or an interfaief. Eqs.(27) and(84) We first discuss liquid droplets with surface hexatic order.
below]. The situation is different, however, when these exci-The equilibrium shape minimizes a droplet free enefgy

tations are superimposed on a nontrivial background geomgiven by contributions from an interfacial energy and the
etry such as that of a sphere or a cylinder. In a recent shoHexatic degrees of freedom

communication[29], we have determined the effect of

hexatic order on the undulation modes and capillary wave 1 .

excitations for the spherical systems described above. The Fd:Fi‘H:hEO'j dA+ EKAJ dADnn'D'n;, (1

frequency shift is large for liposomes with hexatic order.

Observable effects could also occur for liquid metal dropletsynere we use the summation convention throughout @nd

surfactant coated water drops, and in multielectron bubblegenotes the surface tension of the interface of the liquid

in helium. In this paper, we describe hexatic dynamics Oryroplet. For a general manifold with internal coordinates

spherlgal surfaces in detail and extend the theory to mclude:(Xl’Xz), the surface element is given lbA= \/g(x)d2x,

cylindrical geometries. _ __whereg(x) is the determinant of the metric tensgj(x).
_Cy_lmplrlca_l geometries could be realized _by, e.g., coatingeqr an undeformed sphere with radilg, x=(6,¢) with

a liquid jet \_Nlth a he>§at|c monolayer. These jets vdimilar polar coordinatesd and ¢, and dA= RS sin6déde. The

to conventional liquids undergo the well-known Plateau- o i ) o

Rayleigh shape instability as soon as their length reaches @/antity n is a unit vector in the tangent plane withn

critical size. However, the stiffness associated with extended 1 Which identifiessmodulo 2x/6) the long-range correla-

orientational correlations shifts the threshold of this instabil-t'oni in the hex"}“? bond directionf28]. Here, Din’

ity and alters the decay of the cylinder into a chain of drop-=9" DiNk, Whereg" is the inverse ofy;; . The operatoD;

lets. Cylinders provide also an example where hexatic ordef€Nnotes a covariant derivative with respect to the meggic

is perfectly compatible with the underlying geometry: since Thus,Din'=4;n’+T'};n¥, where thel'}; are Christoffel sym-

the Gaussian curvature of the cylinder vanishes, no disclind20ls of second kind. See, e.g., Rg0]. Close to the melting

tion defects are present in the ground state to complicate tHémperature Ty, the hexatic stiffnessky~Ec(&r/ag)?,

analysis. where &1 is the translational correlation lengthy is the
The remainder of this paper is organized as follows. Firstparticle spacing, ané,. is the dislocation core energ].

we analyze the influence of surface hexatic order on sphereghe ratioK,/kgT jumps from an universal value 72/to

by considering liquid dropletéSec. 1). Then, in Sec. lll, we zero when the hexatic melts into an isotropic liquidTat

apply our analysis to cylindrical geometries. Here, we con=T, (see Fig. 1[1].

centrate on liquid jets and we determine the effect of hexatic Droplets have a nearly constant voluieand the corre-

order on the Plateau-Rayleigh instability. Next, we computesponding constraint could be included in the free ené&rgy

the shifted instability due to hexatic order in multielectron However, here it is easier to first consider shape fluctuations

slope=72kg/m

II. DYNAMICS OF LIQUID DROPLETS
WITH HEXATIC ORDER
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which explicitly keep the volume fixed. Finally, in EQL) we  Here, I'(x,x’) is the inverse Laplacian on the sphdeee
neglect effects arising from gravity since we only considerAppendix B, ands(x) the disclination densit{33],
droplets with radiiRy<<l, much smaller than the capillary \
lengthl., which is of order millimeters or more for typical d
droplets in the earth’s gravitational field. s(x)= 7500 2’1 i S(X—X;), (5)

In the following, we will consider the dynamics of shape ¢
fluctuations of spherical droplets. As the droplet deforms itsyith N, disclinations of charge; = +27/6 at positionsx; .
geometrical properties change, i.e., the metric and the meag deriving Eq.(4), we have assumed that the regular part of
and Gaussian curvature are altered. The free en@ighus  the bond-angle field'®? relaxes rapidly on the time scale of
has a functional dependence on the underlying droplet shapghape deformations. In Sec. V, we will show that this as-
This dependence can be treated most efficiently by paramsumption is indeed justified for the systems considered here.
eterizing the surface of the droplet by its surface ve®or Finally, it should be emphasized that E¢4) and (5) hold

For a sphere, we have for arbitrary geometries, not just for that of the sphé&k
Appendix B.
R(x:,x2)=R(6,¢)=Ry( 6, ¢)(sin 6 cose,sind sine,coss). The defects minimizé=y, by arranging themselves to ap-

%) proximately match the Gaussian curvature, whichGi&x)
=1/R2 for a rigid sphere of radiu®,. Deep in a hexatic
See Appendix A for important geometrical quantities such aphase on a sphere, we expégf=12, corresponding to 12
the metric tensog;;(x), the mean curvaturkli(x), and the fivefold disclinations which lie on the vertices of an icosahe-
Gaussian curvaturés(x) in terms of the surface vector dron. With polar coordinates such that there are disclinations
R(x%,x?). at the north and south pole, the 12 defect locations entering

The fundamental assumption which underlies the hexati€d- (5) are given by
free energy discussed above is that the configuration of mini-

N 27k
mal elastic energy corresponds to a vector fie}d where (6,01 e[(0,0),( y,?) ,
no(x+dx) can be obtained fromy(x) by parallel transport O=k=4
of ﬁo. On a sphere however, curvature introduces “frustra- T 2wk
P z Ty, g+t —/ (m,0) ¢, (6)
tion” since parallel transport of along closed loops on the 5 5 Jockes

surface leads to a rotation of Because of this frustration

the ground state of hexatic order on a sphere has at least yghere

positive disclinations. This constraint is a consequence of the

Poincareindex theoreni32], which states that a vector field Ecos‘li @)

on a surface with genug and Euler characteristiE=2(1 Y V5

—g) must have singularities with total vorticity7E. As a

consequence, order which is identified by a vector order-

parameter field on a curved geometry frustrated by a nonzero

integrated Gaussian curvature To investigate the influence of hexatic order on spherical
droplets, we study deformations about the equilibrium con-

A. Fluctuation spectrum

_ figuration. We expand the free energy in a small time-
G:J dAG(x) (3) dependent displacement fieﬂlﬁ(x,t), where
always has topological defedft83]. On a sphere witly=0 R’(X,t)=Ro(x)+ SR(x,1) (8)
andE=2 hexatics must have a minimum of 12 defects with_ R o
charges 2/6 [34]. is the deformed surface ariRh(x) is given by Eq.(2). For

The energy of an isolated disclination in a hexatic di-liquid droplets with hexatic order it is sufficient to consider
verges logarithmically in flat space. However, this energy isPurely normal displacement fields, cf. Fig. 2. Thus,
reduced due to screening by the Gaussian curvature of the - -
sphere. This point can be made more precise by introducing OR(X,1) =Ro{ (X, )N(X), ©)

a local bond-angle field), the angle between and some
local reference frame. The transverse par®adé then con-
nected with the disclination densif{28,33. As shown in
Appendix B, the elastic free energy associated with hexati

whereN(x) =R, /R, is the normal vector of the sphere. The
dimensionless functioti can be expanded in terms of spheri-
gal harmonics

order can then be written §85] o |
. (D=2 2 i)Y im(X). (10
Fr=— EKAJ dAf dA'[G(x) =s(x)I"(x,x") In the absence of defects, the expansioff gin ¢ would
be straightforward. On the sphere, however, one has to deal
X[G(x")—s(x")]. (4) with 12 discrete disclination charges which produce a small
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Here, p is the hydrostatic pressure in the presence of an

interface andp,, 7, andv denote the density, shear viscos-
ity, and the velocity of the liquid inside the droplet, respec-
tively.

For droplets the inertial terms in the Navier-Stokes equa-
tion (138 dominate and effects of viscosity are irrelevant.
Upon neglecting the nonlinear term, the boundary conditions
can be treated most efficiently by introducing a velocity po-
tential ® with v=V®. Then, integration across the droplet
interface leads to

dd(r) dd(r)

P Py
at r=(R0+§RD)* at F=(RO+§RO)Jr

=Ap(x),

FIG. 2. Parametrization of the droplet shape by the surface vec- (14)

tor R. The deformed surface can be parametrized R¥yx,t)

=Ro[1+¢(x,)IN, whereN is the unit normal. where p, is the vapor density of the surrounding medium.
Equation(14) relates the pressure difference between the in-

static icosahedral surface deformation. We initially neglectside and outside of the droplet to the generalized pressure

this discreteness and approximate these defects by a smeawdtidcontinuity Ap(x) caused by the shape displacement.

distribution of defect “charge.” As will be shown in Sec. SinceV.u=0 one hasv2d=0, a Laplace equation with

Il B, corrections arising from the discrete natures¢X) are  solutions of the forni36]

irrelevant for the oscillation frequencies(l) with 1<6.

These considerations can be made more precise by expangr,x,t)

ing s(x) in terms of spherical harmonics

|
r
—) for r<Ry(1+¢)
Ro

% A ()Y (%)

0 |
1
s(x)=G0+E|Z le,mY”n(x), (11) = e
o!=tm=- > ALY m(X) T) for r>Ry(1+).
I,m
where Gy is the undeformed Gaussian curvaturég (15)

=1/R3, ands;,=31?,q;Y},(x;). To obtain the last equa-

tion, we have used the representation of théunction in  The displacement field and the velocity potentiadd are

terms of spherical harmonics, related by the boundary condition that the interface velocity
must match the fluid velocity,

d(cosf—cosh’)s(e— ')

. a  od
o Ro{=Ro—r=—- (16)
=2 2 Vi8¢ )NWin(09). (12 r=Ro+ Ry
=0 m=—
Hence, the coefficients in E@15) are given by
In Eq. (4), we initially smear out the disclination charge by
settings;,=0 for all | >0. _ ,Tim()
With this approximation, the hexatic order has no influ- Am(U="Ro7 7 (17)

ence on the droplet shape and the equilibrium configuration

is a sphere with a radiuR,. However, the presence of .4

hexatic order with a nonzero stiffness constnt, never-

theless, has an important effect on the fluctuation spectrum F (1)

w(l) of a spherical droplet. Aﬁn(t)=RS Im > (18
To calculatew(l), we adopt the treatment of capillary '

waves on spherical droplets without hexatic orflgs] and )

consider the incompressible Navier-Stokes equation for th&/Pon setting

fluid of the droplet

5F’(I’ m)
APO=S App(D)Y 0=, Z2m
I,m I,m I:20 im

v R, ,
+pi(v-V)v=—Vp+yV, (133 (19)

PIE

(whererj;, denotes the complex conjugatergf, andF the
(13 free energy of the deformed droplebne then finds

<

<y
Il

o
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- which exhibits explicitely a hexatic correction to the usual
ROl im(t). (200 capillary wave spectrum. The hexatic contribution, however,
drops out aRRy— > and we recover the result for capillary
Note the influence of hexatic order appears through the tery@ves of a flat fluid surfac86]. Thus, itis essential to study
1 eek deformations of a curved geometry to reveal the presence of
OoF i/ éri, in Eq. (19). ;
hexatic order.

Pi Pv

Apim(t) = Tt

To determine the coefficients,,, in Eq. (19), one has to .
calculate the variation of the droplet free energy. Details In g_eneral, thg und_ulat|on frequgncy E@6) depends on
about this calculation can be found in Appendix C. For smallth® ratio Ka/aRg, which for hexatic order on surfactant-

deviations from a spherical shape, the deformed droplet haPated water drops or at the surface of szupercgoled. liquid
volumeV' with metal droplets iK,/oR5=(&1/Rg)*(Ec/oag). This ratio

grows to become of ordeEC/aa(%:O(l) close to a continu-

5 S . ous hexatic-to-crystal transition, i.e., whép~R, (see also
V'=V=Ry V477'r00+|2l EI Iriml? ] +O(ry) (21)  Sec. V).
<~ =
[see Eq(CH)]. Thus, the volume constraivt=V' appropri- B. Effect of defects on the spectrum
ate to droplets can be incorporated directly by considering \ye now take the deformations associated with a discrete
only displacements which fulfil(to leading order in the 55y of 12 disclination defects into account, i.e., we consider

Fm's) nonzeros,,, with >0 in Eq. (11). We first neglect the pos-
o | sibility of disclination motion. Thus, we assume that on the
R L RN E 22) time scale of the characteristic frequen@g), the disclina-
00 A (s Uimt tions remain in fixed positions which minimize the hexatic

free energy of the undeformed sphere. Thus Ng= 12 dis-

With the constraint of fixed volume, the interfacial contribu- clinations at the vertices of an icosahedron, the positions
tion to the free energy becomes in Eq. (5) are given by Eq(6). As the sphere is deformed,
the hexatic free energy then changeq s to first order in

Fl=o [ oG+ 30 fim)
(-ba+2)

el |
. r=k,3 3 I
R oRES S ref0-10+2), (23 S D

m=—1
5 _ _ This follows from Eq.(C23) since ds,, is of orderr,,, and
whereF; = 047R; is the interfacial free energy of the unde- the terms of ordes;,ds;, vanish since the defect arrange-
formed droplet. Equatiori23) follows from Egs.(C5 and  ment on the sphere minimiz&s,. To calculate the variation

(22). The hexatic free energy is given by of the interfacial contribution the volume constraint has to be
. ) , included in the free energy. Thus, by considering the modi-
1 (I=21)%(14+2) fied free energy
r_ 2 TSN T
Fh ZKA|:21 mzz—l |rlm| |(|+1) y (24)
cf. Eq.(C23. Fd:Fd‘l'f dVp(x) (29)

Upon settingF =F{ +F|, and
0 et (wherep=pe,— pin is the pressure difference between out-
Nm="rm(t)e , (29 side and inside of the dropletthe complete first variation

. ) ) becomes
and evaluating Eq.19), we find for the fluctuation spectrum

(provided! >0 andp,<p)) [37]
5(1)|”:d:0f dx g(x)5<1)g(x)+f d?x\g(x)pa'V(x)
Ka (I-1)(1+2)

2 g
o =——=I(-1D)(+2)| 1+ . w
RS oR3  1(1+1) 1 (I-1)(1+2)
(26 Ko o 00z & &, T+ D)

=1 m=-I|

Equation(26) shows that hexatic order only affects undula- .
tion modes in a curved geometry: In the flat space limit of XSimYim(X) 2 [l Y (X), (30
large Ry and|>1 with k=I/R, fixed, one has I",m’

K3 K wheresMg is given by Eq(C4) and6VV by Eq.(C6). The
w’=—|o+—|, (27 shape equation for quasispherical droplets with hexatic order
P Ro becomes
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disclinations remain fixed on the time scale of an undulation
[i.e., 8s;m=0 holds in Eq(C23)] the dispersion relatio(26)
remains valid for 8<1<6. Because disclination motion is
catalyzed by absorption and emission of dislocations with
mean spacingy, the disclination diffusion constant i35
~(ag/é1)?D,, Where theDy is the particle diffusion con-
stant. For a surfactant coated water droplet of rad®4s
S =1 mm one hagfor =102 N/m) w(I=2)=100 Hz and
- Do=10 8 cn?/s. The estimate &,/£7)?=10 2 suggests

‘ only minor disclination motion during an undulation period

and the spectrum is unaffected for0<6.

Ill. DYNAMICS AND INSTABILITIES IN CYLINDRICAL
FIG. 3. Shape of a liquid droplet with hexatic order and 12 GEOMETRIES
disclinations lying on the vertices of an icosahed(surface defor-

mations associated with the defects are exaggerated Next, we will discuss the influence of hexatic order on the

Plateau-Rayleigh instabilit}y39,4Q of cylindrical liquid jets
| coated with a hexatic monolayer. Because the Gaussian cur-
(=1 +2)Y (x)s vature of a cylinder is zero, defect-free hexatic order is per-
I(1+1) m m - fectly compatible with this geometry in the absence of defor-
(31) mations. However, the hexatic stiffness constant will resist
deformations leading to a nonzero Gaussian curvature. The
Thus, nonzero coefficients,, affect the mean curvature complication of defects in the ground state is absent for
H(x) of the stationary droplet. This equation simplifies uponhexatic order on cylinders.
making the ansatz The surface vector of a cylinder of undeformed radRys
w is given by

HOO=HoFHO0=Hot 2, 3 himYin(x), (32

1
+20H(X)=Kp—
p 0’() ARglzzlmzfl

ﬁ(x)=(R0 cose,Ry sing,z), (37)

with with x=(¢,z). See again Appendix A for the fundamental
2Hqyo+p=0. (33)  geometrical quantities of the cylinder in termsRf

The free energy of liquid cylindergets) is given by Eq.
One then finds the extremal equation for the mean curvaturg]), where nowdA=Rydedz The displacement field can
namely, again be chosen to be purely normal, i.e.,

) |
2H(x) = 2H0+ 2 s VD) . R'=R+RN, 39

1m=-1 1(1+1)

34 where nowN(¢,z) = (cose,sing,0). The displacement field

On the other hand, a deformed sphere has mean curvatuf&d" be expanded in plane waves
[see Eq(C15H)]

> 1 {(9.2,1)= 2 rm(t)e e, (39)
' 3
2H' ()= o=+ 5= 2 (1=1)(1+2)rnYim(x). (35 "
0 0 I,m
where k=27n/L, with n=0,£1,+2,... for a cylinder
Comparison of the last two equations then leads immediwith length L (we assume periodic boundary conditions
ately to the static surface deformation coefficients along the axis of the cylinder for simpliciyand
K
0 A
Nm=SIm—————— 36
S 1+ 1) (38 S = S S (40)

n=—o m=-—ow

for >0 andr{,=0 for I=m=0 in the ground state. Thus,
for Kp# 0 the defects deform the droplet as indicated in Fig.
3. However, nonzerg,,, have no influence on the frequen-
ciesw(l) for 0<I<6. Indeed, icosahedral symmetry insures
thats,,=0, and hence, =0, unlesd =6,10,12. .. [38],

so corrections of ordes;,,, have no influence on the frequen- d(r,z,0 t)ZE AS (telkzeimel (kr) (41)
cies w(l) for smalll. Thus, provided the positions of the km me

We neglect the density outside the jet &p;), and make
an ansatz for the velocity potential inside in terms of cylin-
drical coordinatesr( ¢,z),
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where | ,(kr) is the Bessel function of the first kind of K SF'
. . . . - Im( RO) d{rkm}
imaginary grgumen[41]. Equations(14) and (16) remain p,Rorkm(t)W=pkm= ———— (50
valid and yield m(KRo) 2mwRAL ST,
- ';km(t) where
Ap(z,¢)= 2, prme<e'™?. (51
wherel” (x)=dI(x)/dx. G
If the cylinder is deformed, its surface area and volume . o ] .
change. EquatioC4) of Appendix C implies Upon settingrm="rp,e ' ““Mt one finds the fluctuation
spectrum of a liquid cylinder with surface hexatic order,
1, namely,
A'—A=27RoL roo+—; (R3K2+m?)|r el
2 e |(kRy)
and with Eq.(C6) one has PR Tm
Ka KRG
1 212 1 m2 A 0
, ) x| R2k24+m2—1+ — ————|. (52
V' =V=27R3L r00+5§ |rkm|2), (44) 0 oR3 K2R3+ m? 52
— 2 —
where thek=0, m=0 term is excluded from the suiy, . 2V;/hen Ka=0, Eq. (52) shows »"<0 for m=0 and
Upon choosing ’ Rgk“<1. The cylinder thus becomes unstable. it 27R,,

leading to the well-known Plateau-Rayleigh instability
) [39,40. However, forK ,# 0 the stability of liquid cylinders
Foo= — > "kl %, (45 is enhanced by hexatic order. The “fastest growing” mode
’ k¢, which maximizes ¢ »?), is now given by

the displacement field keeps the volume fixedrresponding

to an incompressible liquid jeand the difference in interfa- i 1) x| 1—x2— ﬁxz =0 (53)
cial free energy between deformed and undeformed cylinder dx R I(Im(x) URS '
becomes 0

wherex=KkR,. Thus, close to the hexatic-to-liquid transition
Fi’—Fi=7-rRoLcr§,’ (RIK?+m?—1)|r % (46)  where Kp/oR3=1, one hasR2k?=0.25 compared with
i R3k?=0.48 forKo,=0. Thus, the characteristic wavelength

Note that this energy difference vanishes ker0, m=+1  A=2m/k; of the undulations of the unstable cylinder is sig-

deformations, corresponding to a uniform sideways translabificantly stretched by the presence of hexatic order. As we

tion. shall see in the following section, hexatic order has a similar
We next calculate the hexatic contribution to the free en£ffect in stabilizing multielectron bubbles against fission.

ergy of the deformed cylinder. Equatidi©13 with back-

ground Gaussian curvatufe=0 leads to the Gaussian cur- IV. HEXATIC DYNAMICS AND FISSION

vature of the deformed state, namely, IN MULTIELECTRON BUBBLES

o Next, we will discuss multielectron bubbles in liquitie.
G'(¢,2)= 2 K?rype?eme. (47 These bubbles can undergo both a freezing transition and a
km shape instability. Hexatic order affects both the fluctuation
spectrum and the instability threshold for fission. The free
energy of a multielectron bubblE,=F4+F. is that of a
droplet[cf. Eq. (1)] with an additional Coulomb contribu-

Equation(4), together with the representation of the Green’s
function of the Laplacian on the cylinder,

Ro elkzgimeg—ikz’ g—ime’ tion, i.e.,
T(x,x")=— ' , (49
2mL Km k2R2+ m? 1 .
0 Fb:()'f dA+§KAf dADinJDlnj
then yields for the hexatic free energy of the deformed cyl-
inder 1 X)p(x’
+ Zf dAf dA'Lp(,). (549
7l KRS x=x']
Fr=—Ka X [Nl (49 o
Ro “km k2R§+ m2 Here,p(x) denotes the charge distribution on the surface and
¢ is the dielectric constant of liquidHe [42]. In an equilib-
Equation(14) now leads to rium fluid, p=eN/4xR3 for a sphere withN electrons.

031502-7



P. LENZ AND D. R. NELSON PHYSICAL REVIEW BE57, 031502 (2003

The assumptions underlying this theoretical description T
are the following.

(i) The electrons are restricted to the two-dimensional
manifold given by the liquid-vapor interface. This is justified
since density functional calculatiorisf., e.g., Refs[43,26)
show that the electrons form a thin layer of thickness
<R, on the surface wittb=1-4 nm.

(i) One can neglect the effects on the shape of the
charged bubbles arising frofa) applied electric fields which T —
trap or hold the electrongh) the movement of the bubbles in
the system; andc) gravity. Assumption(a) is justified since
typical external electric fields are of the ordes=3 kV/cm
[25], while a charged sphere with radilig=10 um and
N=10" produces an electric fiele-300 times largerEspp

stable unstable

. L

stable

unstable

=(eN/2R3)=1 MV/cm. Similar arguments apply tdb) I I Ru/R
since typical drag forces are much weaker than the Coulomb 1 ER,d

forces. Assumptioric) is justified sinceR, is much smaller ¢

than the capillary length. of liquid helium, I.=v2a/p/g FIG. 4. Schematic stability diagram for multielectron bubbles
=0.6 mm. with hexatic order. The stability of a spherical bubble with rad®us

(i) We assume that the electrons can be treated classind chargeeN depends on the temperatufe For hexatics in the
cally, i.e., corrections arising from quantum mechanics canemperature rang€,,<T=<T;, bubbles with radiR, <R<R/ are
be ignored. For electrons on charged bubbles this is justifiegtable, whereas for=T; they are not. The enhanced stability is due
since at the melting temperature quantum mechanical corre¢e internal hexatic order. We expect an even larger region of en-
tions become only relevant at higher densities, hanced stability for droplets with crystalline ordei5].
=10 cm 2 [25]. . o .

Upon once again neglecting defects by settigg=0, | . Within the approximations described abpve, the_ fluctua-
>0, the stationary solutions of the free ener(f) are tion spectrum of a multielectron bubble with hexatic order

spherical bubbles. To determine the equilibrium radius wecan be calculated. Compared with the discussion of Sec. Il
use the partition function of a noninteracting ideal gas tothe only difference arises from the Coulomb contribution. As

describe the vapor phase. The free energy of a sphericferived in Appendix C 3 one has fpf<p (thus, neglecting

bubble is then given by the density inside the bubble
eN)?
. Nueh T A= (1)1 59
F(V,T)=rr;|n[ e TNye| In 21 Pim= R (P ©9
4 202 By combining the last equation with Eq20), (23), and(24)
T 3 2 one now find(for | >0) [44]
+ Pex 3 R°+47oR+ ZRS}' (55
. . 2. 9
where Ny, is the number of helium atoms,; the thermal w :?U —1)(1+1)
wavelength, andp., the pressure outside of the bubble. Pi%o
Minimization with respect to the first term only yields, of RY  Ku (I-1)(1+2)2
course, ideal gas behavior, i.e., % (|+2)_4_°'+ A (60)
RS oR3 1(I+1)
PinV=NpeKgT, (56)

For K,=0 spherical bubbles become unstable to fission if
where p;, is the pressure inside the bubble. However, byr <R, i.e., w?(1=1,)<0 for R,<R andl,=2 [26,27.
taking all contributions into account the equilibrium radius  ForK ,#0 the stability of charged bubbleséshancedy
R, of a charged multielectron bubble is determined by thethe hexatic order of the electrons on the sphere. Thus, for
Laplace equation T,,<T<T,; the unstable mode is stil.=2, but noww?(l,
) =2)<0 for Ry<R/ with R{<R, cf. Fig. 4. The icosahe-
Pin— Pex= 21_ (eN) ) (57) dral symmetry of the deformed shape waih # O is too high
moTECTR, 87-ng8 to have an influence on the fission instability which occurs at
I =2, justifying our neglect of disclination defects.
Thus, one obtaingfor p;,~pey) as typical length scale for Because the electrorig/hich determineK ) are far apart

Ry the classical Coulomb radius relative to the helium atom@vhich determiner) K,/oR?
will be smaller than for droplets of supercooled liquid metals
s (eN)? 58) when Ry=R;,. For helium bubbles witftN=10° one has
¢ 16mwoe R.,=10 um and we expectsee Sec. VI that (K,/oRZ)
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=10 “. Chargedmetal droplets also undergo the same fis-the convective and the inertial terms can be neglected in the

sion instability. Thus, it might be possible to detect the onsefNavier-Stokes equatiofi3 for the surrounding bulk fluid.
of hexatic order by investigating the stability of charged lig- Thus, here we must solve the Stokes equation
uid droplets in Paul trapgl9]. - -

In the flat space limitl(—<, k=1/R, fixed) one obtains, Vp=7nVu, (64)

with n=eN/47R3, - o
7 where » andv denote now the shear viscosity and the ve-

2 locity of the bulk fluid, assumed to be the same inside and
pexw?(K)=ok3—47k>—, (61)  outside the membrane. The undulating membrane imposes
& the boundary condition

in agreement with Ref.25]. As Eq. (61) shows, planar He
interfaces are unstable to deformations with<<k,
=4mn?/ge. This is the “dimple” instability discussed in the
Introduction which triggers the initial creation of multielec-
tron bubbles.
: (8, ¢,t)
Roé’E RO .

N-v(1)|7=gy(+5=Rol, (65)

Wherelfio is given by Eq.(2) and the membrane velocity by

(66)
ot
V. DYNAMICS IN HEXATIC MEMBRANES
WITH A SPHERICAL TOPOLOGY The following analysis simplifies somewhat by imposing
As a last application, we discuss the influence of hexati®oundary conditions for the componef¥t¢N-v) andV Xv
order on the fluctuations of a spherical vesicle. The free eninstead ofv, andv,, . Then,

ergy F of a hexatic membrane is given §%7,28 S - -
N-V[N-o(N]li—ga+0=—V (RotN), (67

1
F:Fb+ Fg+ FhEEKJ' dA(2H)2+KGf dA G

N-[VX0(N)]li=gy1+9=0, (68)
+ EKAJ' dADnNDn;, (62  Where Eq.(67) follows from the conditionV - v =0.
2 ! We proceed now as followgt6]. For a given(deformed

vesicle shape the bending forces on its surface are known.
where we have neglected spontaneous curvaturexaamtd  These forces must be balanced by the viscous stresses. The

KGTahrg ;hiiﬂqb?ijnmagr?aeslffséiglgggjltzérs?;pg\t/li\éﬂg flu- induced flow fields can be calculated by using Lamb’s so-
'neeq hap o P . lution with these boundary conditions. Details about this so-
ids inside and outside cannot equilibrate on experlmentalﬂtion have been given by several authors, cf., e.g., Refs

times scalesoften corresponds to the minimum of the free ; . ; .
energy (62) with prescribed surface arel and volumeV [46,49,5Q. The main formulas are summarized in Appendix

[46] (see also Ref[47]). The area and volume constraints . ) ) - -
can be implemented by considering the modified free energy AS Shown in Appendix D, the viscous fordd=II,N
+11; associated with Lamb’s solutiojsee Eqgs.D1) and
~ (D4)] is given by Egs(D12), (D13), and (D14). By using
F:F+Fa+Fv0IEF+f dA"(X)+J dVp(x). (63  Egs.(D9) and (D10), one then obtains for the normal and
tangential force differences
Often, a constant pressure difference between outside and
inside p=p.,—pPir=p  —p~ and surface tensionr are
taken as Lagrange multipliers to enforce these constraints.
Here, we allow for both spatially varying surface tension

© |
MEO0=T7(0=2 2 Fim(t)7

o(x) and pressurg(x) to enforce local incompressibility ><(2|+1)(2|2+2|—3)Y 69
[cf. Eq. (72) below]. In many situations, the average values [(1+1) m(X), (69
of o andp will depend on the volume captured by a vesicle

of a given area at the moment of its formation. and

In the following analysis, we only consider surface shapes o
which are topologically equivalent to a sphere. Then, the = .
D e 4 CO0-TT0=2 3 fin

21+1 .
second term of Eq62) can be neglected, since it is a topo- t)R077I(I +1)VY"“(X)’

m=—|

logical invariant. We again temporarily ignore discrete dis- (70)
clination defects and show later that their inclusion does not _ R
affect characteristic frequencieg(l) with | <6. wherell;” andIl; refer to forces inside and outside of the

Becausex plays a similar role for vesicles asplays for  vesicle, respectively.
droplets, hexatic order should lead here to similar effects on The tangential motion of the fluid along the membrane
the spectrumw(l). For vesicles the dynamical fluctuations induces lipid flow within the membrane itself. However, the
take place at very small Reynolds numbgt8]. Therefore, membrane stays locally incompressible. This constraint is
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enforced by the local surface tension in Eg3), which bal- 1,
ances the tangential component of the stress vector. Then, Fo=Fp+ EKROJ dAlLL, (79)
with
o whereF,=8wk and £ can be evaluated on an undeformed
(X, )=0o+ > 2 Tm(t)Ym(X), (71  sphere to leading order if
I=1 m=-I
one finds(for |=1) [ j 2
= L=D'D;D DﬁQD D;. (79
Dl g 2D . °
Tim(Y)=im(1) o7+ 1) (72 Upon using the decompositidd0) of £(x,t), one finds
Since any nonstationary membrane configuration exerts a ©

local force on the surrounding fluid the shape displacement  F/=F,+ EKE Dt (1=1)(1+2).
leads to a generalized pressure discontindify(x) which =1 m=-I
balances the normal component of the pressure discontinuity (80)
between the inside and outside ) ) )
We now insert Eq9.77), (24), and(80) into Eq.(19) (with
5 (x)— I, (x)=Ap(x), (73)  F' replacingF}) and set agaim,,=r (t)e" 'Ot Upon
equating the pressure discontinuity in Ef§9) to the normal

whereAp(x) can be expanded in spherical harmonics as irforce difference(69), we find for the fluctuation spectrum of
Eqg. (19). In order to determine the coefficienps, in Eq.  spherical vesicles with hexatic ordéor | >0)
(19) now the variation of the vesicle free energy has to be

calculated. Details are presented in Appendix C. I
The deformed surface is characterized by the Gaussian o(l)==i—(1-1)(1+2)
curvature[see Eq(C14)] 7Ry
(I=-1)(1+2)
1 1 2 DA —
G'(X=—+—= > (=120, (74 X+ FooRo Ky — | (81
RO RO I,m
. with
and the mean curvature given by E@5). The volume
change is given by Eq21) and the change in surface area by
Eq. (C7), which becomes r()= I(1+1) 2

, (21+1)(2124+21—-1)

’ _ P2 2
AA=R 2mr°°+§1 m:E—I [P T2+ 2)72] Note thatw(l) vanishes fol =1, corresponding to transla-
3 tions of the vesicle as a whole.
+O(rm)- (75 The eigenfrequencies(l) explicitly depend on thé=0
) , , _component of the tensiomy which acts as Lagrange multi-
The volume constraint can again be implemented by consmiﬁ”er for the area. Since the value of, is generally not
gring displacements which _fulfiII E@22). Then, upon defin- known, one has to use the area constrdif8) (and the
ing thg excess aredrelative to a sphejeby A=A qctuation-dissipation theorento expressoy in terms of
—4mRg, the area constraint reads SA. Which modes pick up the excess area depends on the

N ratio y=oR3/x. As shown in Ref[47], for floppy mem-
ERSZ > Inml21—=1)(1+2)=6A=const. (76)  branes(i.e., smally) each mode contributes equally to the
=L me excess area, whereas for stiff membrafigs, largey) only

the lowest model=2) will develop a large amplitudgs3].

Similarly, the area term of Eq63) for the deformed sphere L 3
Y a63) P For the purpose of estimating the effect of hexatic order,

becomes . . ;
we proceed in a different way. The area constraint becomes
1 much easier to handle if the volume constraint can be ne-
F.=F,+ ZRSE Tl i+ EO’QRS glected. By assuming that the vesicle is permeable to both
hm water and larger molecules, the area constraint can be incor-
w porated directly(again to leading order in the,,’s) by
x2 2 nml*(1-1)(1+2). (77)  choosing
ey Pl
Finally, it has been shown in Ref61,57 that the bendin — 1 | 2 Ia+1)
Y, ; : - B2 oG 9 Foo=— > X Inml? 1+ . (83
energy of a quasispherical vesicle is given by 2\4m 1 mi=t 2
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Then, A’=A and one can setr,=0 in Eq. (81). Equiva-

PHYSICAL REVIEW E57, 031502 (2003

Upon making again the ansat22) (where Hqoy+p=0)

lently, we focus on floppy vesicles, formed under conditionsand usingG =G,+ 25H/R,, one finds for the mean curva-

such thatoR3< k.
In the flat space limit ofrg=0, largeRy, and|>1 with
k=I/R, fixed, one has

. (84)

w=—i-—

4y

K
xk3+—k
RO

ture

14 < Ka
2H(x)=2Ho+ 2.2 KI(1+1)+ 0oR?
(-v0+2)

|(|+1) S|mY|I’T'I(X)1 (88)

As for the liquid droplets discussed in Sec. II, the hexaticyhere the static surface deformation coefficients in the
contribution drops out aRy,—~ and we recover the result ground state are given by

for undulation modes of a flat fluid bilaygb4]. The fre-
qguency shift(81) depends on the ratik ,/«. However, for
large vesicles we expect thk{, =4« (a universalresult for
flat hexatic membranes at long wavelendi8s]) leading to
a frequency enhancement in E§1) (with o(y=0) by a fac-

Ka
kI?2(1+1)2+ ooR3I(1+1)

(89

0 _
rIm_slm

tor ~13/9=1.44 for thel=2 quadrupole mode. Note the for 1>0 andr?mzo for [=m=0. o
relatively pronounced effect of hexatic order. In general, we However, |cogahedral symmetry again insures thgt
expect the largest change in the characteristic frequencies fer0, and hence,=0, unlessl=6,10,12. .., atleast for

floppyvesicles withy=oR3/k<1.

floppy, approximately spherical vesicles. Hence, corrections

Similar to droplets, the presence of an icosahedral array d?f 0rdersim have no influence on the frequenciegl) for
defects in hexatic membranes leads to an equilibrium consMalll. Just as for hexatics on liquid droplets, disclination
figuration with a deformed surface. For vesicles, the com{motion is negligible during an undulation period and the dis-

plete first variation of the free enerdy[see Eq(63)] reads
-~ 1
OVF =S« f d?x g0 {[2H(x)]26Mg(x)
+8H(x)5<1>H(x)}+aof d?x\g(x) 8Mg(x)

1
2 D\/(x) — 2 il
+J d?x\/g(x)psIV(x) KAJ d?x g(x)Rg

o |
(1-1)(1+2)
X, Dy St

X,Z, e Yo (X), (85)
,m

where (again 6Yg is given by Eq.(C4), §YH by Eq.
(C16), and sV by Eq. (C6). Since integration by parts
shows that

f dzxvg(X)H(X)Vzi(XFJ d?x\/g(X) {(X) VZH(x),
(86)

persion relation(81) remains valid for 8<1<6. This can be
seen by using an estimate similar to that of Sec. Il B. Here,
w(l=2)=40 Hz for a 1 um vesicle and the disclination dif-
fusion constant is Dsw(ao/gT)zD”pid , Where Djjyiq
=108 cn?/s and @g/é7)%2=102.

Finally, we show that our assumption that the regular part
of the bond-angle field relaxes rapidly on the time scale of
undulation modes is indeed justified for vesicles with hexatic
order. As follows from Eq(B8) the relaxational dynamics
for 6"°9 is described by

d Hreg
g = KaV 20", (90

wheren,, is the shear surface viscosity of the membrane. For
simplicity, we have neglected in the last equation defects
which are immobile on the time scale of ripples anyhow.
Upon expanding?™®9 in terms of spherical harmonics

the equilibrium shape equation for quasispherical vesicles

with hexatic order becomes now

p+20oH (X) — 4H(X) k[ H2(X) — G(X)]— 2k V2H(X)

1 & (1-1)(1+2)
R_gzl et 1(0+1)

=Ka Yim(X)Sim - (87)

o |
efeg=|2 > OROY im0, (91)
=0 m=-
and setting
0= e oo, (92
one finds
. Ka
wy(l)=—i 2I(I+1). (93
7]mRO

Thus, by comparing with the undulation spectrumgiven
by Eq. (81) one obtains with ,=»7h (where h=100
—1000 nm for bilayersfor floppy vesicles and large
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wo(l) xk h Thus, hexatic order has only a weak influence on the sta-
w, ()~ 2K, R_I' (94)  bility of multielectron bubbles. But with sophisticated ex-
o A0 perimental setups it still might be possible to measure its

Thus,w(l)<w,(l) for h<Ry, justifying our assumption for effects. A possible scenario to study fission could, e.g., make

large vesicles. Similar arguments apply to spherical dropletsS€ Of the fact that bubbles become compactified as they
and bubbles and cylindrical geometries. move under the influence of an external field away from the

liquid-vapor interface towards the positive electrode im-
mersed in the liquid. Thus, if forT>T; multielectron
bubbles with an initial radiuR, are stable to fission up to a
We conclude by discussing the implications of our resultgdistanceh from the interface then they will be observed at a
for possible experiments. As discussed in the Introductionsomewhat larger distandet sh for T, <T<T;.
one of our main motivations was to search for dynamic sig- It also might be possible to experimentally confirm our
natures of hexatic order in curved geometries, order which igheoretical predictions in the regime of stable bubbles by
difficult to detect by other means. As shown in Sec. V, themeasuring the characteristic frequencies of an oscillating
frequency shift due to hexatic order is particularly large forbubble which is stabilized by the balance of bouancy and
vesicles. Thel=2 quadrupole relaxation rate can be en-électric field forces at a constant height below the surface.
hanced by a factor=1.44 due to bond-orientational order Our predictions also apply to multi-ion bubbles which ex-
and should be experimentally detectable by measuring theerimentally can be realized by charging helium films with
decay rate of fluctuations by, e.qg., video or fluorescence miions instead of electror{20].
croscopy[46]. Finally, for charged droplets in Paul traps similar effects
For liquid droplets the influence of hexatic order on theshould be observable by, e.g., trapping a droplet and shooting
fluctuation spectrum is somewhat weaker. For the magnitudeharges on it until it undergoes fission. For this purpose it
of the hexatic stiffness one has the estinfafe might be necessary to use more conventional liquids and to
perform the experiments at much higher temperatures. Fis-
&\ sion with ordered ions on droplets can still be achieved by
a_o) ' (95 using ions with high charg&e since T, Z%e?\/n. For ex-
ample, for droplets witfRy=10 xm andN=10° the melting
wherea, is the lattice constanty is a translational correla- transition should occur at room temperature Zor 7. Pro-
tion length which diverges aBapproached,,, andC(T) is  Vided the surface tension of the liquid is large enough the
a prefactor. WherT>T,, one hasC(T)=2E(a/a)? [1],  droplets will still be stable at these parameter values. _
whereE_ is the energy of a dislocation core with diameter [N summary, we have shown that two-dimensional hexatic
a~a,. On the other hand, for the liquid metal droplets order should lead to experimentally observable effects in a
szTlag and with C(T)=kgT one hasKA/aRﬁzl for &; variety of systems with spherical and cylindrical geometry.

~R,. Thus, hexatic order should also have experimentaIIySim”ar effects could also occur in related systems such as,
relevant consequences for the fluctuation spectrum of liqui§-9-» cylindrical vesicles. Here, we expect that the laser-
droplets and cylinders when the translational correlatioduced pearling instability will be modified by the presence
length grows to become comparable to the sphere size &f hexatic ordef56,57.

cylinder radius. As we saw in Sec. Ill, the Plateau-Rayleigh Crystalline order will also alter the fluctuation spectrum
instability will also be modified forK,#0. As the liquid of spherical and cylindrical droplets and membraf8—

cylinder decays into a chain of droplets the distance betweefi0- The effects discussed here should be elaeger if the
the droplets will depend on the ratié,/oR2, as follows exatic phase is bypassed and one freezes directly into a
from Eq. (52). For K,/oR2=1 one hatl)é No=27r/K two-dimensional solid with shear modulys The resulting

. . A 0= f— f

=12.6R, as typical distance between the droplets in contrasErequency shifts can be espmat.ed by rgpladfngby #Ryin :
to N y=9.0R, appropriate tck ,= 0 [39,44. he formulas above. Details will be given in an upcoming

For multielectron bubbles is determined by the distance publication[45].
b, between the helium atoms. Here, we expect that
~3kgT, /b2, whereT,, is the melting temperature arig}, ACKNOWLEDGMENTS
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critical radius R;;=10 um. By using theT=0 result E,
=0.1e%/a, [7] one findsK ,/oR%=10"*. It is worth men-
tioning that K,/oR3~1/\N, since K,~NE. and E
~RZ/N®2 Thus, the influence of hexatic order will be  Here, we review the elementary differential geometry
somewhat stronger for bubbles with smalier needed to determine all relevant geometrical properties, i.e.,

VI. EXPERIMENTAL CONSEQUENCES

Ka=C(T)

APPENDIX A: PARAMETRIZATION OF SHAPE
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FIG. 5. Orthonormal basis vectogs ande, of the tangential
plane of the sphere and basis vecté;;,sand éz of the tangential
plane of the cylinder. One h& =R, /Ry, €,=R,/R, sin é for the
sphere, see Eq2). For the cylindere,=R; /R, ande,=R,, see
Eq. (37).

PHYSICAL REVIEW E57, 031502 (2003

Ci=1/R

Cy=1/R

Ci=1/R

Cy=0

FIG. 6. Principal curvatures for spheres and cylinders. In both
cases the principal directions of curvature are drawn. For a sphere
both principal curvatures are identical, i.€;=C,=1/R. For a
cylinder one ha€,=1/R, C,=0. The principal curvatures are the

the first and second fundamental forms, of a surface in termsigenvalues of € bl). Thus, H=—(C,+C,) andG=C,C,.

of its surface vectoR. For a more extensive review, see Ref.
[61]. For simplicity, we specialize here to spherical and cy-

The mean curvaturel and the Gaussian curvatu@are

lindrical surfacesDeformationsof these shapes are treated determined by thesecondfundamental form, which is de-

in Appendix C.

For an undeformed sphere with constant radRgsone
can choose= (x*,x%)= (0, ¢) with polar coordinate® and
¢. The surface vector is then given by

R(6,¢)=Ry(sind cose,sindsing,cosd).  (Al)
The first fundamental form is defined by
9ij=Ri"R;, (A2)
with the covariant vectors
. . 4R
' as

On the sphere the vectofR,(x),R,(x)} form an orthogonal
(but not orthonormal basis in the tangential plane at the

fined by

whereN is the (local) unit normal vector to the surface
Ry(x%,x?) X Ry(x1,x?)
\/6 1

and the second equality of E¢A7) follows from Iiﬂ\]
=0. In terms of the second fundamental form, and upon
raising an index ob;; via the operatiorg'kbkab} , we have

N(xt,x2)= (A8)

point x, cf. Fig. 5. The contravariant components are given R

by R=g“R;, whereg'l is the inverse ofg;;, i.e., g'gj

=6,. We use the summation convention throughout. With

the parametrization of EqA1), we have
I51= Ro(cos6 cose,cosf sing,—sing),

R,=R(—sin@sine,sinf cose,0). (A4)
The area element is generally given 8= \gdxtdx?,
where

g=delg;;). (A5)

For a sphere the first fundamental form is given by

R3 0)

0 R3sirte (A6)

(g9ij)=

anddA=R3 sin 6déde.

2H=—b! and G=de(b!)= b_ detby) (A9)
! 7" g delg;)’
See Fig. 6. For a sphere one has
N= R =(sinf cosg,sinf sing,cosh) (A10)
0
and the second fundamental form becomes
) -Ry 0
(bip={ 4 Ry i)’ (A11)

It is easy to check that| = — /R, and hencet = 1/R, and
G=1/Rj in this case.

The covariant derivative of a vector with covariant com-
ponentsa; and contravariant componends is defined by
[62]

Diaj:ajyi_akrrj and Diaj:a{‘FakF{(i. (A12)
Here, thel“}‘j are the Christoffel symbols of the second kind.
They are related to the Christoffel symbols of the first kind
Fikj by T:(J =gk'Fi|j s where

031502-13



P. LENZ AND D. R. NELSON PHYSICAL REVIEW BE57, 031502 (2003

fundamental form only. This is the content of the famous
theorema egregium of Gauss. A geometrical interpretation of
the Riemann curvature tensor is given in Fig. 7.

For a sphere the nonzero components of the Riemann cur-
vature tensor are

N b b
R21= R221 =sir’6, R112 R121 =1
J11 J22
(A20)

Covariant derivatives have another useful property; inte-
grals over covariant derivatives of vector fields can be inte-
grated by parts, similar to vector fields in flat space. This is
the content of the divergence theorem: for an arbitrary closed
surfaceM (i.e., a surface with no bounda®M =0) one has

FIG. 7. Geometrical interpretation of the Riemann curvature
tensor on the sphere. Parallel transport of the veﬁ‘tcﬁong the
path shown in the figure leads to a rotatior\?’&\?)' i
=Ry;V¥oxI X', whereRy; is the Riemann curvature tensor, de- jMdADiU =0, (A21)
fined in Eq.(A17). As a consequence, on a curved surface covariant

derivatives do not commute. Indeg¢d); ,Dj]ni=GnJ , WhereG is i i NS o
the Gaussian curvature which in two dimensions determines afi®’ @Y vector'. Here,Djv =(1Ng)ai(Vgu')=V v is the

components oRy;; . divergence of/ on a curved surface. Finally, the Laplacian is
defined byA=D'D; . It becomes on the sphere

IkJ ((9 Okt 9;0ik— é’kglj) (A13) B 1 1 & N 1 o/ . p 1%
P2 | sirPg 9o Sin0 a0\ 98]
Note that thel’;; are symmetric in the first and last index, (A22)
ie.,
Note that the eigenfunctions dfs,,, are spherical harmonics
Fikj:iji . (A14)
For a sphere with polar coordinates, we have —10+D)
P P ’ AsthIm:TYlm- (A23)
0
ré,=re¢=r9%=r¢=0, IY _gosh : : :
00— L 00~ L b~ L pp r ¢ sing’ For undeformed cylinders with radid&, one can choose
x=(¢,z). The surface vector is then given by
') =—sin6 cosé. (A15)

R(X)=(RyCOS¢,Ry SiNg,2). (A24)
As can be shown by a direct calculation, the covariant de-
rivatives ofg; , g", and 5} vanish. Covariant derivatives do Here, the first fundamental form is given by
not commute, in general. For scalars one Hag®D;f

=D,D;f if 3,9;f=d;5,f. However, for vectors the commu- R2 0
i ivatives is gi (9i))= (A25)
tator of covariant derivatives is given by j 1
[Di,Djla=aRyj - (A16)  anddA=R,dedz.
. . . Th f tal f
Here,R'kji is the (mixed) Riemann curvature tensor e second fundamental form becomes
-Ry O
[ [ 0
kJI—é’ F aiF AT FKIF (A17) (bij):( 0 0)' (A26)
In two spatial dimensions one has a particularly simple rela-
tion Thus,Gy=0 andH = 1/2R,.
| Since for cylindersg;; is mdependent ofp and z all
Rkji=9km?™7;iG, (A18)  Christoffel symbols vanish, i.eI'=0. Thus,d=D; and
. ) i i the Laplacian becomes for this geometry
wherey'! is the antisymmetric contravariant tensor,
o 1 ¢ &
YI=(816,—8,61)1\g, (A19) Aey=dd=——+—. (A27)
R3 9¢? 97°

with covariant counterparyy = y"g;g; . Note, Eq.(A18)
shows that the Gaussian curvature is determined by the fir§the eigenfunctions are plane waves
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- 1 o For sixfold bond-oriented order, we identify with 6
Acy|e'kze'm¢= - —2(k2RS+ m?)e'k%eM® (A28)  +2w/6, which determines the minimum charge of disclina-
Ro tion defects. The vector field; is a “vector potential” asso-
ciated with the Gaussian curvature, i.e.,
APPENDIX B: HEXATIC FREE ENERGY
. . . . DiAj_Din:&iAj_(?in:_G(X)’yij s (Bg)
In this appendix, we derive a useful representation of the
hexatic free energy for vesicles, droplets and multielectrosee Ref[61]. The last result is a consequence of E418)

bubbles. The discussion is kept rather general since it has #nhd of the representation of the curvature tensor in this basis,
be valid for both deformed and undeformed spheres and cyhamely,

inders. The discussion here generalizes earlier approaches
[28,55 to (arbitrary curved geometries with defects. See R =0 ws—diw%+olo®—olo®. (BL0)
also Ref[35]. Bii — i@ T i@ T Wi Wy W@y
Consider, the free enerdy, introduced in Sec. Il, i.e.,  Note that Eq.(B9) allows an explicit construction for the
vector potential for an arbitrary closed surface with a given

1 o , :
FhZEKAJ’ dzx\/ﬁDinJD'nj _ (81  Gaussian curvature, that is,

We now introduce an ortmmrmal basis{e,} of the tangen- Aj(x)==g"7Di(x) | d*X'Vg(x")Tg(x,x")G(X).
tial space(Note that orthonormality is not guaranteed for the (B11)
tangent basis vectors discussed in Appendix A; for example,

the “natural” basis vectorsR, and Ii(P for the sphere are Here,I'y(x,x") is the Green’s function for the Laplacidy,,
merely orthogonal.Then, for an arbitrary vector fied one

has the contravariant components S(x—x'

var P AT (x,X') = % (812

V=V, 6, 65=08.p. (B2) g
Here, Greek indices have been used to distinguish this basﬁ\éoéfnéheat the Laplacian ; depends explicitly on the metric
from the{ﬁi}. The covariant derivative of is now given in 9
terms of
. . A fED‘D-f=ia-(\/§a‘f). (B13)
Di\V,=€,- (d4V), (B3 g N

so that We now divide the field® into a regular par®9 and a

singular part®s"9 which represents the contribution of de-
fects. The regular pa®'? fulfills D;D;0"9=D;D;0"9,

we assume that this part relaxes rapidly on the time scale of
shape deformations. The singular p@t'"? is related to the
disclination densitys(x) by [cf. Eq. (5)]

DiVa:ﬂiVa_wiBaV‘Bi (B4)
with V,=V¥e,-e, and

wiﬂa:éﬂ'aiéa (BS)
1
Vg

whereq;= * 27/6 for disclinations in a hexatic. Thus,

is the affine connection appropriate for this bd€i8]. For

orthonormaléa one hasw; g, = — wj,z. Thus, one can define
a covariant vector field\; by

YIDiD;OM=s(x)=—= > ¢io(x—x), (B14)

wiaﬁzsaﬁAi ' (BG)
wheree , 5= 8,55~ 5285 is the Levi-Civita symbol. Dj(X)@)Si“g(X):gkly”Dk(X)J’ d2x’ Jg(x )L g(x,x")s(X"),
We now setn=n“e,,. Sincen'n;=n“n,=1 itis possible (B15)
to introduce an bond-angle field as angle between and
the local reference framge,}with wherel'y(x,x") is the same Green'’s function as in E§11).
Note that in the gauge defined by E&11), one has
n,-1=cos®, n,_,=sin®. (B7)

D;D'®%"9+ D,A'=0, (B16)
Then,ainazsaﬁnﬁai(i), and it is easy to show that E(B1)
becomes which is the Euler-Lagrange equation of the functiof&s).
By using Egs.(B11) and (B15) the hexatic free energy
(B8) becomes for an arbitrary manifold with metricand

1 . .
—_ 2y | i i . )
Fn= KAJd XVg()(D'O+AN (DO +A).  (B) Gaussian curvaturé&(x)

2
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1
Fh=—§KAJ dzwg(x)f d*’ Jg(x")[G(x) —s(x)] 7

XT(x,x")[G(x")=s(x")],

A= [ axgrag
(B17)

The spherical harmonic decompositigh0) together with

_ Egs.(C5) and(22) then leads to Eq.23).

where we have integrated by parts and used(Bg2). ~ The change in the second fundamental form has only to
In the planar case, the ground state has no defects, i.e known up to first order if. The normal vector of the

duces to the Liouville action

N’'=N-Ru{'R+0(Z?). (C8)

1
Fh=—§KAf de\/g(X)f d?x"\/g(x")G(x)

Therefore, the second fundamental form changes according
to

X

1)G(’)
— | G(x').
A

xX'

(B19) ..

(bij)"=Rf;-N"=bj; +RoD; i+ ¢b; +O(£%).  (C9)
APPENDIX C: FREE ENERGY OF DEFORMED SPHERES With
AND CYLINDERS ) ) )

(™)' =g’ +2Ro¢b*+0(£?), (C10
As the spherical shape gets displaced its free energy

changes. In this appendix, we calculate the correspondingne finds
contributions arising fronti) the interfacial free energy and
the bending energySec. C 1, (ii) the hexatic free energy
(Sec. C 2, and(iii ) the Coulomb energ{Sec. C 3. We begin
by discussing the geometrical properties associated with

shape deformations.

(b))’ =~ o Sl(1- D +RDILHO().  (C1D

The resulting Gaussian curvature of the deformed surface is

. . - given by
1. Geometrical properties and variations of the mean and
Gaussian curvature ,
. _ . . b’ deiby) ,
The displacement of spherical shapes parameterized by G'=deib!")= —,=+—5+O(§ ). (C12
Eq. (8) leads to new tangent vectors g 97
R/ =Ri—Ro{b{Re+ Ry N (Cy)  Therefore,
. . Ty _ ik il 2
=R(1+ ) +Ry&N. (C2) G'(x)—G(x) 2RHG{+Ryy™y leDI§k+O(§ )
(C13
The first fundamental form then changes according to
? ? =—2G{-V2[+0({2), (C14

00i=9;~ G =R R ~R-K, which leads, upon expandinG(x) and ¢(x) in spherical
harmonics, to Eq(74).

Similarly, the mean curvature of the deformed surface is
Correspondingly, the change in the area element is given bgiven by

= —2Ry(bj; — Ro{?bij + R3¢ - (C3

1, —2H"=(b})'=(g")’ (by)’
Jo+69=1g 1+2HR05+GRS§2+5RS§'4)+0<§3> By
(c4) =(g"+89")(bjj+ 6by) +O(£%).  (C1H
1 Therefore,
=gl 1+27+ 2+ R34 ¢| +O(23). C5 .
Vg b+t Rl (&) €9 2H'=2H—2Ry{(2H?~G)—RyD'¢;+0(Z?), c16
C16
The volume change is given by
which leads via spherical harmonics to Eg5).
B 2 3 Although not derived here, EqéC1), (C4), (C6), (C13),
5V_f dAR({FHROT) +0(L5), (C6) and (C16) actually hold forgeneralgeometries with mean

while the area of the deformed sphere is

curvatureH (x) and Gaussian curvatufe(x). These formu-
las will be needed in the analysis of Secs. Il B, Ill, and V.
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2. Hexatic free energy 3. Coulomb energy

Next, we calculate the change in hexatic free energy. The force(per unit areaacting on a dielectrigwith di-
Since Eq{(B17) holds for arbitrary manifolds one has for the electric constant) contributed by an arbitrary electric field

deformed sphere E is given by[27]

' 1 , E2
Fh=—EKAf d?x\g+ 5gJ d?x’' g+ ég p= (C24)

87’

X[G'(x)=s'(x)]I" X XH[G'(x")—=s"(x")]. - -
[G700 =870 [Tg 5%, XL G (x') = 8(X)] Then, in terms of the electrostatic potentia) E=—V
(C17  with V2¢=0, and one can make the anséfar r>R,(1
+{)]

Here, 'y, 55(X,X") is the inverse Laplacian defined on the

deformed sphere, i.e., eN Ro|' "1
b=t 2 c.mYm(T (C25
Mg sal g ag0x’) = 22X (c18 "
XX )= ——.
909 9+ o0 Vg+ 89 The liquid-vapor interface has to be a surface of constant

potential. Thus,(r=Ry+Ry{)=const. Upon setting;,,
FurthermoreG’ is given by Eq.(C14). As the surface gets =cr,,,, wherec is a constant, one then finds
displaced the position of the defects might change. This can
be taken into account by introducing a disturbed defect dis- eN

tribution C|m=R—0f|m (C20
o |
1 and
S (X)=S(X)+ =5 2, 2 5mYim(X)=Gg
ROI:O m=—|
- . 0 eN -
1 - E=—6 Un= =5 142 (1= D) Yim &
+ —| 8spoYoo(X)+ Sim+ 0Sim]Yim(X) |. r=Ry+{Ry 0 '
2| 2%00Y000X) + 2, [Sim 351 Yim(x) -
€19 Thys,
The coefficientssyy is determined by disclination “charge (eN)?
conservation,” i.e., p= : 1+22 (I_l)rImY|m+O(r|2m)>-
7TRye l.m
(C28

f d?x+\/g+ 8gs’ (x)=4. (C20

APPENDIX D: LAMB'S SOLUTION FOR SPHERICAL
Thus, RIPPLES

8S00= — 2I 0. (C21) Here, we present the main features of Lamb’s solution for
obtaining the fluid velocity fields from the surface stresses.
Since the coefficientss,,, are of orderZ, s’(x), andG’(x)  We follow here closely the presentations in R¢#6,49,50,
differ only in order {. Therefore, one can replace in Eq. Where more details can be found.
(C17 g+ &g by Vg andT g, 54(x,x") by Ty(x,x"). Since The inner solutior(i.e., for r<Ry(1+¢)] of the Stokes

for the spherd35] equation(64) with viscosity 7 is given by
«© | ! ! " " - | + 3
o Yim(0",0")Y{u(0",0") <= (Tt 2% p=
I'(x’,x )=—|§lm;| [(+1) ; v 21 @ 27(1+1)(21+3) Py
(C22 | A <)
TV TE-TU VR (D1)
one finally gets n(1+1)(21+3) ™
- _EK i é 11— 1)(1+2) = (S + 351m)|2 with the velocity potential function
2 A A [(1+1) ' r!
o (rx,n= > (Pl<m(t)YIm(X)(_> : (D2
+0O(LPsim), (C23 ol Ro
a result needed in Secs. Il and V. and the hydrostatic pressupe = 3,p;~(r,x,t) with
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|
pr(r,%,t) = E p.m<t>v|m(x>( ) (D3)

The outer solution can be obtained by performing the re-

placement — — (I + 1) in the formulas above. Thus,

I |-2 N l+1 .
>_ > 2 > >
v7=2 | Ve TSN T i )
(D4)
Here,
I RO 1+1
w?(r,x,t)=m;| Cim(D)Yim(X) 7) (D3)
and
I RO I+1
|o|>(r,x,t)=m;I pﬁq(t)Ym(X)(T) - (D§)
The boundary conditions become
IR I -
N'U(r)lf=§o(l+§):§n |mRoP|m(t)
I
* Re @im(D) [ Yim(%) (D7)

and

N-VIN-v(N)]=V-u(Nli-g,a+ g
[(1+1) o

1
2@+ Pn(V !

0

Em [ <|—1)<p.<m<t)]vlm<x>.

(D8)

By comparing Eqs(D7) and (D8) with the right hand sides
of Egs.(65) and(67) one then obtains

(21-1)(1+2)

[+1

(21+3)(1—1)

>
[ i

i Im™—

Pim="—
(D9)

PHYSICAL REVIEW E57, 031502 (2003

and

_ (1+1) -

‘le:i’lmR(z)Tv ‘le:i’ImR(z)M' (D10

The stress vector associated with this velocity field is given
by

ﬁ:HnN+ﬁt:—’\]p+7] W_F) zﬁ(; l;)
(D11)
Here, the inner normal component is given by
My =T 0=(Rot+{Ro) ")
3—4
=§n; 3 — 1)@+ mpm} Yim(X).
(D12
The outer normal component reads
My =15 0=(Ro+{Ro) ")
7 13+31%2—|
=> [2—(|+2)(|+1)sv|> —IO| Yim(X).
m | R moo2l=1) ©'m
(D13

Finally, the difference between the inside and outside tangen-
tial component is given by

Hy -1 =2, [2—[(1—1>¢|m +(142) oi]
[(1+2) _ (7= R
F i@+ P =1 Pimf ¥ Yim(X):
(D14)

[1] D.R. Nelson and B.I. Halperin, Phys. Rev.1B, 2457(1979.

[2] J.M. Kosterlitz and D.J. Thouless, J. Phys6C1181(1973;
A.P. Young, Phys. Rev. B9, 1855(1979.

[3] L.D. Landau, Phys. Z. Sowjetunidtl, 26 (1937).

[4] C.C. Grimes and G. Adams, Phys. Rev. Ld®, 795(1979.

[5] D.C. Glattli, E.Y. Andrei, and F.I.B. Williams, Phys. Rev. Lett.
60, 420(1998, and references therein.

[6] G. Deville, A. Valdes, E.Y. Andrei, and F.I.B. Williams, Phys.
Rev. Lett.53, 588(1984.

[7] D.S. Fisher, B.I. Halperin, and R. Morf, Phys. Rev28 4692
(1979.

[8] R.H. Morf, Phys. Rev. Lett43, 931(1979.

[9] C.F. Chou, A.J. Jin, S.W. Hui, C.C. Huang, and J.T. Ho, Sci-

ence280, 1424(1998, and references therein.

[10] C. Knobler and R. Desai, Annu. Rev. Phys. Chetf, 207
(1992.

[11] R. Seshadri and R.M. Westervelt, Phys. Rev. L&6,. 2774
(199).

[12] C.M. Murray, inBond Orientational Order in Condensed Mat-
ter Systemsedited by K. Strandbur@Springer, Berlin, 1992

[13] K. Zahn, R. Lenke, and G. Maret, Phys. Rev. L&2, 2721
(1999.

[14] A. Jaster, Phys. Rev. B9, 2594(1999.

[15] K. Bagchi, H.C. Andersen, and W. Swope, Phys. Revb3E
3794(1996.

031502-18



HEXATIC UNDULATIONS IN CURVED GEOMETRIES PHYSICAL REVIEW B57, 031502 (2003

[16] F.L. Somer, Jr., G.S. Canright, and T. Kaplan, Phys. R&8E [40] T.E. FaberFluid Dynamics for Physicist&Cambridge Univer-
5748(1998. sity Press, Cambridge, 1995

[17] J. Park, T.C. Lubensky, and F.C. MacKintosh, Europhys. Lett[41] |.S. Gradshteyn and I.M. RhyziRable of Integrals, Series and
20, 279(1992, and references therein. Products 5th ed.(Academic Press, San Diego, 1994

[18] R.M.L. Evans, Phys. Rev. B3, 935(1996. [42] Here, we have assumed as appropriate for helium, that the

[19] E.J. Davis, Aerosol. Sci. Technd6, 212 (1997). dielectric constants of the liquid and o_f |ts_vapor phase are
comparables)=¢,=e=1. The general situation of a charged

sphere with dielectric constasay in surrounding medium with
dielectric constants, (with e;#¢,) is more complicated.
However, in the limit of largeN (when the radius of the sphere
becomes large compared to interparticle spacome can in
first order replace: by (g,+¢7)/2.

[43] V.B. Shikin, Pis'ma zZh. Ksp. Teor. Fiz27, 44 (1978 [JETP
Lett. 27, 39 (1978].

[44] For simplicity, thel =0 mode has been excluded here. How-
ever, bubbles are stabilized by their finite compressibility
against purely radial oscillations.

[45] P. Lenz(unpublishegl

[46] M.B. Schneider, J.T. Jenkins, and W.W. Webb, J. Phys.
(France 45, 1457(1984), and references therein.

[47] S.T. Milner and S.A. Safran, Phys. Rev.38, 4371(1987.

[48] The Reynolds number is Repv R,/ 7. A characteristic veloc-
ity is v=Ry/7 with 7= 7R3/ k. Thus, Re=kp/ 7°R,. With «
of the order of 10kgT, #5/p=102cné/sec, and p
=10° kg/m® one has Re: 10 ° for Ry=1 um. See also Ref.
[47].

[49] U. Seifert, Eur. Phys. J. B, 405(1999.

[50] J. Happel and H. Brennet,ow Reynolds Number Hydrody-
namics(Noordhoof, Leiden, 1973

[51] M.A. Peterson, J. Math. Phy&6, 711(1985.

[52] D.C. Morse and S.T. Milner, Phys. Rev.32, 5918(1995.

[53] In fact Milner and Safran find that,,, diverges foll =2 in this
case. Here, we do not take this instability into consideration.
However, for a discussion of this point see also R84l

[54] U. Seifert, Adv. Phys46, 13 (1997).

[55] F. David, E. Guitter, and L. Peliti, J. Phy&rance 48, 2059
(1987).

[56] R. Bar-Ziv and E. Moses, Phys. Rev. LeiB, 1392(1994.

[57] P. Nelson, T. Powers, and U. Seifert, Phys. Rev. [ %&tt3384
(1995.

[58] Z. Zhang, H.T. Davis, and D.M. Kroll, Phys. Rev.48, R651
(1993.

[20] P. Leiderer, Z. Phys. B: Condens. Mat8$8, 303 (1995.

[21] H.T. Chiang, V.S. Chen-White, R. Pindak, and M. Seul, J.
Phys. 115, 835(1995.

[22] C.C. Huang, inBond Orientational Order in Condensed Mat-
ter Systemsedited by K. StrandburgSpringer, Berlin, 1992

[23] F. Celestini, F. Ercolessi, and E. Tosatti, Phys. Rev. L&it.
3153(1997.

[24] U. Albrecht and P. Leiderer, J. Low Temp. Phy&6, 131
(1992.

[25] P. Leiderer, inTwo-Dimensional Electron Systemedited by
E.Y. Andrei (Kluwer Academic, Amsterdam, 1997

[26] M.M. Salomaa and G.A. Williams, Phys. Rev. Letz, 1730
(1981.

[27] L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskit)ectrodynam-
ics of Continuous Medja2nd ed. (Pergamon, New York,
1984).

[28] D.R. Nelson and L. Peliti, J. Phy&rance 48, 1085(1987.

[29] P. Lenz and D.R. Nelson, Phys. Rev. L&7, 125703(2001.

[30] U. Dierkes, S. Hildebrandt, A. Kater, and O. Wohlralylini-
mal Surfaces [Springer, Berlin, 1992

[31] D.R. Nelson, inPhase Transitions and Critical Phenomena
edited by C. Domb and J. LebowitAcademic, New York,
1983, \ol. 7.

[32] T. Frankel, The Geometry of Physid€ambridge University
Press, Cambridge, 1997

[33] See, e.g., D.R. Nelson, Phys. Rev28 5515(1983; see also
S. Sachdev and D.R. Nelson, J. PhyslT; 5473(1984.

[34] For the generalization tp-fold symmetric order parameters on
the sphere see T. Lubensky and J. Prost, J. RRyance 48,
1085(1987.

[35] M.J. Bowick, D.R. Nelson, and A. Travesset, Phys. Re%2B
8738(2000.

[36] L.D. Landau and E.M. LifshitzHydrodynamics(Pergamon,
New York, 1959.

[37] Corrections to this spectrum arising from the nonlinear term of[5g] S, Komura and R. Lipowsky, J. Phys. 2] 1563(1992.

Eq. (133 will be of higher order inr,,. As can be seen from
Egs. (17), (18), and (25) p,(v-V)v is of order Ryw?rZ,,
whereas the leading termg dvlot and ﬁp are of order
Ro®? | -
[38] D.R. Nelson and F. Spaepen, Solid State PAs.1 (1989.
[39] S. Chandrasekharydrodynamic and Hydromagnetic Stability
(Dover, New York, 1981

[60] S. Erdin and V.L. Pokrovsky, e-print cond-mat/0008266.

[61] F. David, in Statistical Mechanics of Membranes and Inter-
faces edited by D. Nelson, T. Piran and S. Weinbéwjorld
Scientific, Singapore, 1988

[62] E. Kreyszig,Differential GeometryDover, New York, 1991

[63] M. Nakahara,Geometry, Topology and Physid©P Publish-
ing, London, 1990

031502-19



