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Hexatic undulations in curved geometries

Peter Lenz* and David R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 31 October 2002; published 14 March 2003!

We discuss the influence of two-dimensional hexatic order on capillary waves and undulation modes in
spherical and cylindrical geometries. In planar geometries, extended bond-orientational order has only a minor
effect on the fluctuations of liquid surfaces or lipid bilayers. However, in curved geometries, the long-
wavelength spectrum of these ripples is altered. We calculate this frequency shift and discuss applications to
spherical vesicles, liquid metal droplets, bubbles and cylindrical jets coated with surface-active molecules, and
to multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the
threshold for the fission instability of charged droplets and bubbles, and for the Plateau-Rayleigh instability of
liquid jets.
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I. INTRODUCTION

In two dimensions the melting from a crystal to an isotr
pic liquid can be a two-stage process@1#, driven by the se-
quential unbinding of dislocations@1,2# and disclinations@1#.
At low temperaturesT,Tm dislocations are suppressed d
to their cost in elastic energy. However, their free ene
decreases with increasing temperature. At a temperatuT
5Tm , the quasi-long-ranged translational order of the cr
tal is destroyed by the dissociation of dislocation pairs. T
transition leads to an intervening hexatic phase, which
exhibits extended orientational correlations. The unbind
of disclination pairs sets in at a higher temperatureT5Ti . In
this second transition the quasi-long-ranged orientationa
der of the hexatic phase is destroyed, leading to an isotr
liquid. This mechanism allows the melting transition to
continuous in contrast to the first-order melting~directly to
an isotropic fluid! predicted by Landau@3#.

Several experimental systems have illuminated the na
of two-dimensional~2D! melting. A nearly ideal system is
electrons on helium@4–6#. The electrons are trapped on th
surface of liquid helium by a submerged, positively charg
capacitor plate. Their separations are rarely less t
1000 Å, so the in-plane physics is that of classical partic
with a repulsive 1/r potential. The liquid helium does no
freeze at low temperatures, so it is possible to cool the e
trons on this liquid substrate well below a sharply defined
freezing temperature (Tm;0.5 K) @4#. On the theoretical
side, important parameters such as the 2D shear modulus
dislocation core energy are easily calculated with this pot
tial @7#. Computer simulations@8# reveal a shear modulu
which appears to drop to zero at the melting temperat
Measurements of the shear modulus@6# and specific heat@5#
are consistentwith a continuous dislocation mediated me
ing transition. However, in these experiments it is difficult
determine experimentally if hexatic order and a disclinat
unbinding transition are in fact present aboveTm .

However, experimental evidence for hexatic orderhas
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been found in a variety of other systems, including fr
standing liquid crystal films@9# and Langmuir-Blodgett sur-
factant monolayers@10#. A hexatic-to-liquid transition has
been observed in two-dimensional magnetic bubble arr
@11#. Furthermore, there is strong support for two-stage c
tinuous melting from recent experiments on two-dimensio
colloidal crystals@12,13#. In this case, the colloids can b
directly imaged by video microscopy, thus allowing a prec
test of the theory.

The modest time scales available even on the fastest c
puters make equilibration in Monte Carlo or molecular d
namics simulations of two-dimensional melting difficu
However, there is now evidence via computer simulations
continuous melting and a narrow sliver of hexatic phase
hard disks@14# and for particles interacting with a repulsiv
1/r 12 potential@15#. There are also indications of defect m
diated melting transitions for the familiar Lennard-Jon
6-12 pair potential@16#.

In the above experiments, order was typically probed
diffraction or by direct measurement of correlation functio
in real space. It is difficult to use these methods, howev
when hexatic order is present on a curved surface, such
sphere or a cylinder. Examples where hexatic and crystal
order might be present on a sphere include ‘‘liposomes,’’ i
closed vesicles composed of lipid bilayers@17,18#, the sur-
face of liquid metal droplets confined in Paul traps@19#, and
multielectron bubbles submerged in liquid helium@20#.

Hexatic order in spherical liposomes seems likely beca
flat two-dimensional planar layers of lipids such as DMP
~dimyristoyl phosphatidylcholine! @21#, similar to free stand-
ing liquid crystal films@22#, can exist in a variety of state
with different degrees of positional and orientational ord
Examples include fluid, smecticC, hexatic and crystalline
phases.

Curved hexatic order may also arise on droplets. Celes
et al. @23# have found evidence from computer simulatio
for extended orientational correlations at the flat surface
supercooled heavy noble liquid metals, such as Au, Pt, o
These metals have a general tendency to reduce the i
atomic distance at the surface. Upon supercooling this ef
is enhanced, leading, generally to a two-dimensional crys
line surface layer. Under suitable cooling conditions, hexa

,
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P. LENZ AND D. R. NELSON PHYSICAL REVIEW E67, 031502 ~2003!
order can also appear on the free surface of underco
liquid metals@23#. Surface hexatic order may also occur
water droplets coated with surface-active molecules, gi
that there are already extensive observations of this typ
order in Langmuir-Blodgett monolayers@10#.

Finally, one might expect spherical hexatic and crystall
order in multielectron bubbles in helium. These arise wh
the helium surface undergoes an electrohydrodynamic in
bility at high electron densities. The surface then develop
regular array of dimples, each containing 106 electrons or
more. As the electric field increases these dimples dee
until eventually electrons break through the interface. Af
subduction, large numbers of electrons (105–107) then coat
the inside wall of a large (10–100mm radius! sphere of
helium vapor. These multielectron bubbles have been
served to move through the helium after their creation ab
a protruding anode@20,24,25#. They are stable at low elec
tron densities since the Coulomb pressure can be com
sated by the surface tension of the helium liquid-vapor in
face. However, if the electron density becomes too high
electrostatic repulsion exceeds the balancing force and
bubble undergoes fission@26,27#.

One might hope that bond-orientational order in a fl
membrane or an interface could be detected by its effect
the dynamics of undulation modes or capillary waves. U
fortunately, hexatic order couples only to theGaussiancur-
vature@28#, which vanishes for a simple sine wave deform
tion of a flat membrane or an interface@cf. Eqs.~27! and~84!
below#. The situation is different, however, when these ex
tations are superimposed on a nontrivial background ge
etry such as that of a sphere or a cylinder. In a recent s
communication @29#, we have determined the effect o
hexatic order on the undulation modes and capillary w
excitations for the spherical systems described above.
frequency shift is large for liposomes with hexatic ord
Observable effects could also occur for liquid metal drople
surfactant coated water drops, and in multielectron bubb
in helium. In this paper, we describe hexatic dynamics
spherical surfaces in detail and extend the theory to incl
cylindrical geometries.

Cylindrical geometries could be realized by, e.g., coat
a liquid jet with a hexatic monolayer. These jets will~similar
to conventional liquids! undergo the well-known Plateau
Rayleigh shape instability as soon as their length reach
critical size. However, the stiffness associated with exten
orientational correlations shifts the threshold of this insta
ity and alters the decay of the cylinder into a chain of dro
lets. Cylinders provide also an example where hexatic or
is perfectly compatible with the underlying geometry: sin
the Gaussian curvature of the cylinder vanishes, no discl
tion defects are present in the ground state to complicate
analysis.

The remainder of this paper is organized as follows. Fi
we analyze the influence of surface hexatic order on sph
by considering liquid droplets~Sec. II!. Then, in Sec. III, we
apply our analysis to cylindrical geometries. Here, we c
centrate on liquid jets and we determine the effect of hex
order on the Plateau-Rayleigh instability. Next, we comp
the shifted instability due to hexatic order in multielectr
03150
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bubbles~Sec. IV!. As a last application, we investigate i
Sec. V the influence of hexatic order on the undulations
spherical vesicles. Finally, in Sec. VI, we elaborate in de
on experimental consequences of our work.

II. DYNAMICS OF LIQUID DROPLETS
WITH HEXATIC ORDER

We first discuss liquid droplets with surface hexatic ord
The equilibrium shape minimizes a droplet free energyFd
given by contributions from an interfacial energy and t
hexatic degrees of freedom

Fd5Fi1Fh[sE dA1
1

2
KAE dA Din

jDinj , ~1!

where we use the summation convention throughout ans
denotes the surface tension of the interface of the liq
droplet. For a general manifold with internal coordinatesx
5(x1,x2), the surface element is given bydA5Ag(x)d2x,
whereg(x) is the determinant of the metric tensorgi j (x).
For an undeformed sphere with radiusR0 , x[(u,w) with
polar coordinatesu and w, and dA5R0

2 sinududw. The

quantity nW is a unit vector in the tangent plane withnin
i

51 which identifies~modulo 2p/6) the long-range correla
tions in the hexatic bond directions@28#. Here, Din

j

[gjkDink , wheregi j is the inverse ofgi j . The operatorDi
denotes a covariant derivative with respect to the metricgi j .
Thus,Din

j[] in
j1Gki

j nk, where theGki
j are Christoffel sym-

bols of second kind. See, e.g., Ref.@30#. Close to the melting
temperatureTm , the hexatic stiffnessKA;Ec(jT /a0)2,
where jT is the translational correlation length,a0 is the
particle spacing, andEc is the dislocation core energy@1#.
The ratio KA /kBT jumps from an universal value 72/p to
zero when the hexatic melts into an isotropic liquid atT
5Ti

2 ~see Fig. 1! @1#.
Droplets have a nearly constant volumeV and the corre-

sponding constraint could be included in the free energyFd.
However, here it is easier to first consider shape fluctuati

FIG. 1. The hexatic stiffnessKA as function of the temperatur
T. KA diverges nearTm and jumps discontinuously to zero atTi

with limT→T
i
2 KA(T)572kBT/p @1,31#.
2-2
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HEXATIC UNDULATIONS IN CURVED GEOMETRIES PHYSICAL REVIEW E67, 031502 ~2003!
which explicitly keep the volume fixed. Finally, in Eq.~1! we
neglect effects arising from gravity since we only consid
droplets with radiiR0! l c much smaller than the capillar
length l c , which is of order millimeters or more for typica
droplets in the earth’s gravitational field.

In the following, we will consider the dynamics of shap
fluctuations of spherical droplets. As the droplet deforms
geometrical properties change, i.e., the metric and the m
and Gaussian curvature are altered. The free energy~1! thus
has a functional dependence on the underlying droplet sh
This dependence can be treated most efficiently by par
eterizing the surface of the droplet by its surface vectorRW .
For a sphere, we have

RW ~x1,x2![RW ~u,w!5R0~u,w!~sinu cosw,sinu sinw,cosu!.

~2!

See Appendix A for important geometrical quantities such
the metric tensorgi j (x), the mean curvatureH(x), and the
Gaussian curvatureG(x) in terms of the surface vecto
RW (x1,x2).

The fundamental assumption which underlies the hex
free energy discussed above is that the configuration of m
mal elastic energy corresponds to a vector fieldnW 0, where
nW 0(x1dx) can be obtained fromnW 0(x) by parallel transport
of nW 0. On a sphere however, curvature introduces ‘‘frust
tion’’ since parallel transport ofnW along closed loops on th
surface leads to a rotation ofnW . Because of this frustration
the ground state of hexatic order on a sphere has at lea
positive disclinations. This constraint is a consequence of
Poincare´ index theorem@32#, which states that a vector fiel
on a surface with genusg and Euler characteristicE52(1
2g) must have singularities with total vorticity 2pE. As a
consequence, order which is identified by a vector ord
parameter field on a curved geometry frustrated by a non
integrated Gaussian curvature

Ḡ5E dAG~x! ~3!

always has topological defects@33#. On a sphere withg50
andE52 hexatics must have a minimum of 12 defects w
charges 2p/6 @34#.

The energy of an isolated disclination in a hexatic
verges logarithmically in flat space. However, this energy
reduced due to screening by the Gaussian curvature o
sphere. This point can be made more precise by introdu
a local bond-angle fieldu, the angle betweennW and some
local reference frame. The transverse part ofu is then con-
nected with the disclination density@28,33#. As shown in
Appendix B, the elastic free energy associated with hex
order can then be written as@35#

Fh52
1

2
KAE dAE dA8@G~x!2s~x!#G~x,x8!

3@G~x8!2s~x8!#. ~4!
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Here, G(x,x8) is the inverse Laplacian on the sphere~see
Appendix B!, ands(x) the disclination density@33#,

s~x![
1

Ag~x!
(
i 51

Nd

qid~x2xi !, ~5!

with Nd disclinations of chargeqi562p/6 at positionsxi .
In deriving Eq.~4!, we have assumed that the regular part
the bond-angle fieldu reg relaxes rapidly on the time scale o
shape deformations. In Sec. V, we will show that this a
sumption is indeed justified for the systems considered h
Finally, it should be emphasized that Eqs.~4! and ~5! hold
for arbitrary geometries, not just for that of the sphere~cf.
Appendix B!.

The defects minimizeFh by arranging themselves to ap
proximately match the Gaussian curvature, which isG(x)
[1/R0

2 for a rigid sphere of radiusR0. Deep in a hexatic
phase on a sphere, we expectNd512, corresponding to 12
fivefold disclinations which lie on the vertices of an icosah
dron. With polar coordinates such that there are disclinati
at the north and south pole, the 12 defect locations ente
Eq. ~5! are given by

~uk ,wk!PH ~0,0!,S g,
2pk

5 D
0<k<4

,

S p2g,
p

5
1

2pk

5 D
0<k<4

,~p,0!J , ~6!

where

g[cos21
1

A5
. ~7!

A. Fluctuation spectrum

To investigate the influence of hexatic order on spheri
droplets, we study deformations about the equilibrium co
figuration. We expand the free energyFd in a small time-
dependent displacement fielddRW (x,t), where

RW 8~x,t !5RW 0~x!1dRW ~x,t ! ~8!

is the deformed surface andRW 0(x) is given by Eq.~2!. For
liquid droplets with hexatic order it is sufficient to consid
purely normal displacement fields, cf. Fig. 2. Thus,

dRW ~x,t !5R0z~x,t !NW ~x!, ~9!

whereNW (x)5RW 0 /R0 is the normal vector of the sphere. Th
dimensionless functionz can be expanded in terms of sphe
cal harmonics

z~x,t !5(
l 50

`

(
m52 l

l

r lm~ t !Y lm~x!. ~10!

In the absence of defects, the expansion ofFd in z would
be straightforward. On the sphere, however, one has to
with 12 discrete disclination charges which produce a sm
2-3
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P. LENZ AND D. R. NELSON PHYSICAL REVIEW E67, 031502 ~2003!
static icosahedral surface deformation. We initially negl
this discreteness and approximate these defects by a sm
distribution of defect ‘‘charge.’’ As will be shown in Sec
II B, corrections arising from the discrete nature ofs(x) are
irrelevant for the oscillation frequenciesv( l ) with l ,6.
These considerations can be made more precise by exp
ing s(x) in terms of spherical harmonics

s~x!5G01
1

R0
2 (

l 51

`

(
m52 l

l

slmY lm~x!, ~11!

where G0 is the undeformed Gaussian curvature,G0

51/R0
2, and slm[( i 51

12 qiY lm* (xi). To obtain the last equa
tion, we have used the representation of thed function in
terms of spherical harmonics,

d~cosu2cosu8!d~w2w8!

5(
l 50

`

(
m52 l

l

Y lm* ~u8,w8!Y lm~u,w!. ~12!

In Eq. ~4!, we initially smear out the disclination charge b
settingslm.0 for all l .0.

With this approximation, the hexatic order has no infl
ence on the droplet shape and the equilibrium configura
is a sphere with a radiusR0. However, the presence o
hexatic order with a nonzero stiffness constantKA , never-
theless, has an important effect on the fluctuation spect
v( l ) of a spherical droplet.

To calculatev( l ), we adopt the treatment of capillar
waves on spherical droplets without hexatic order@36# and
consider the incompressible Navier-Stokes equation for
fluid of the droplet

r l

]vW

]t
1r l~vW •¹W !vW 52¹W p1h¹2vW , ~13a!

¹W •vW 50. ~13b!

FIG. 2. Parametrization of the droplet shape by the surface

tor RW . The deformed surface can be parametrized byRW 8(x,t)

5R0@11z(x,t)#NW , whereNW is the unit normal.
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Here, p is the hydrostatic pressure in the presence of
interface andr l , h, andvW denote the density, shear visco
ity, and the velocity of the liquid inside the droplet, respe
tively.

For droplets the inertial terms in the Navier-Stokes eq
tion ~13a! dominate and effects of viscosity are irrelevan
Upon neglecting the nonlinear term, the boundary conditio
can be treated most efficiently by introducing a velocity p
tential F with vW 5¹W F. Then, integration across the dropl
interface leads to

r l

]F~r !

]t U
r 5(R01zR0)2

2rv

]F~r !

]t U
r 5(R01zR0)1

5Dp~x!,

~14!

whererv is the vapor density of the surrounding medium
Equation~14! relates the pressure difference between the
side and outside of the droplet to the generalized pres
discontinuity Dp(x) caused by the shape displaceme
Since ¹W •vW 50 one has¹2F50, a Laplace equation with
solutions of the form@36#

F~r ,x,t !

55 (
l ,m

Alm
, ~ t !Y lm~x!S r

R0
D l

for r ,R0~11z!

(
l ,m

Alm
. ~ t !Y lm~x!S R0

r D l 11

for r .R0~11z!.

~15!

The displacement fieldz and the velocity potentialF are
related by the boundary condition that the interface veloc
must match the fluid velocity,

R0ż[R0

]z

]t
5

]F

]r U
r 5R01zR0

. ~16!

Hence, the coefficients in Eq.~15! are given by

Alm
. ~ t !52R0

2 ṙ lm~ t !

l 11
~17!

and

Alm
, ~ t !5R0

2 ṙ lm~ t !

l
. ~18!

Upon setting

Dp~x![(
l ,m

Dplm~ t !Y lm~x![2(
l ,m

dFd8~r lm!

R0
3dr lm*

Y lm~x!

~19!

~wherer lm* denotes the complex conjugate ofr lm andFd8 the
free energy of the deformed droplet!, one then finds

c-
2-4
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HEXATIC UNDULATIONS IN CURVED GEOMETRIES PHYSICAL REVIEW E67, 031502 ~2003!
Dplm~ t !5S r l

l
1

rv

l 11DR0
2r̈ lm~ t !. ~20!

Note the influence of hexatic order appears through the t
dFd8/dr lm* in Eq. ~19!.

To determine the coefficientsplm in Eq. ~19!, one has to
calculate the variation of the droplet free energy. Deta
about this calculation can be found in Appendix C. For sm
deviations from a spherical shape, the deformed droplet
volumeV8 with

V82V5R0
3S A4pr 001(

l 51

`

(
m52 l

l

ur lmu2D 1O~r lm
3 ! ~21!

@see Eq.~C6!#. Thus, the volume constraintV5V8 appropri-
ate to droplets can be incorporated directly by consider
only displacements which fulfill~to leading order in the
r lm’s!

r 0052
1

A4p
(
l 51

`

(
m52 l

l

ur lmu2. ~22!

With the constraint of fixed volume, the interfacial contrib
tion to the free energy becomes

Fi85sE d2xAg1dg

5Fi1
1

2
sR0

2(
l 51

`

(
m52 l

l

ur lmu2~ l 21!~ l 12!, ~23!

whereFi5s4pR0
2 is the interfacial free energy of the und

formed droplet. Equation~23! follows from Eqs.~C5! and
~22!. The hexatic free energy is given by

Fh85
1

2
KA(

l 51

`

(
m52 l

l

ur lmu2
~ l 21!2~ l 12!2

l ~ l 11!
, ~24!

cf. Eq. ~C23!.
Upon settingFd85Fi81Fh8 and

r lm5r lm
0 ~ t !e2 iv( l )t, ~25!

and evaluating Eq.~19!, we find for the fluctuation spectrum
~providedl .0 andrv!r l) @37#

v25
s

r lR0
3

l ~ l 21!~ l 12!F11
KA

sR0
2

~ l 21!~ l 12!

l ~ l 11! G .

~26!

Equation~26! shows that hexatic order only affects undu
tion modes in a curved geometry: In the flat space limit
largeR0 and l @1 with k[ l /R0 fixed, one has

v2.
k3

r l
Fs1

KA

R0
2G , ~27!
03150
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which exhibits explicitely a hexatic correction to the usu
capillary wave spectrum. The hexatic contribution, howev
drops out asR0→` and we recover the result for capillar
waves of a flat fluid surface@36#. Thus, it is essential to stud
deformations of a curved geometry to reveal the presenc
hexatic order.

In general, the undulation frequency Eq.~26! depends on
the ratio KA /sR0

2, which for hexatic order on surfactan
coated water drops or at the surface of supercooled liq
metal droplets isKA /sR0

2.(jT /R0)2(Ec /sa0
2). This ratio

grows to become of orderEc /sa0
2.O(1) close to a continu-

ous hexatic-to-crystal transition, i.e., whenjT'R0 ~see also
Sec. VI!.

B. Effect of defects on the spectrum

We now take the deformations associated with a disc
array of 12 disclination defects into account, i.e., we consi
nonzeroslm with l .0 in Eq. ~11!. We first neglect the pos
sibility of disclination motion. Thus, we assume that on t
time scale of the characteristic frequency~26!, the disclina-
tions remain in fixed positions which minimize the hexa
free energy of the undeformed sphere. Thus, forNd512 dis-
clinations at the vertices of an icosahedron, the positionxi
in Eq. ~5! are given by Eq.~6!. As the sphere is deformed
the hexatic free energy then changes as~up to first order in
r lm)

d (1)Fh52KA(
l 51

`

(
m52 l

l
~ l 21!~ l 12!

l ~ l 11!
slmr lm* . ~28!

This follows from Eq.~C23! sincedslm is of orderr lm and
the terms of orderslmdslm vanish since the defect arrang
ment on the sphere minimizesFh . To calculate the variation
of the interfacial contribution the volume constraint has to
included in the free energy. Thus, by considering the mo
fied free energy

F̃d5Fd1E dVp~x! ~29!

~wherep[pex2pin is the pressure difference between ou
side and inside of the droplet!, the complete first variation
becomes

d (1)F̃d5sE d2xAg~x!d (1)g~x!1E d2xAg~x!pd (1)V~x!

2KAE d2xAg~x!
1

R0
2 (

l 51

`

(
m52 l

l
~ l 21!~ l 12!

l ~ l 11!

3slmY lm~x! (
l 8,m8

r l 8m8
* Y l 8m8

* ~x!, ~30!

whered (1)g is given by Eq.~C4! andd (1)V by Eq.~C6!. The
shape equation for quasispherical droplets with hexatic o
becomes
2-5
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p12sH~x!5KA

1

R0
3 (

l 51

`

(
m52 l

l
~ l 21!~ l 12!

l ~ l 11!
Y lm~x!slm .

~31!

Thus, nonzero coefficientsslm affect the mean curvatur
H(x) of the stationary droplet. This equation simplifies up
making the ansatz

H~x!5H01dH̃~x![H01(
l 51

`

(
m52 l

l

hlmY lm~x!, ~32!

with

2H0s1p50. ~33!

One then finds the extremal equation for the mean curvat
namely,

2H~x!52H01
KA

sR0
2

1

R0
(
l 51

`

(
m52 l

l
~ l 21!~ l 12!

l ~ l 11!
slmY lm~x!.

~34!

On the other hand, a deformed sphere has mean curva
@see Eq.~C15!#

2H8~x!5
2

R0
1

1

R0
(
l ,m

~ l 21!~ l 12!r lmY lm~x!. ~35!

Comparison of the last two equations then leads imme
ately to the static surface deformation coefficients

r lm
0 5slm

KA

sR0
2l ~ l 11!

, ~36!

for l .0 andr lm
0 50 for l 5m50 in the ground state. Thus

for KAÞ0 the defects deform the droplet as indicated in F
3. However, nonzeroslm have no influence on the frequen
ciesv( l ) for 0, l ,6. Indeed, icosahedral symmetry insur
that slm50, and hencer lm

0 50, unlessl 56,10,12, . . . @38#,
so corrections of orderslm have no influence on the frequen
cies v( l ) for small l. Thus, provided the positions of th

FIG. 3. Shape of a liquid droplet with hexatic order and
disclinations lying on the vertices of an icosahedron~surface defor-
mations associated with the defects are exaggerated!.
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disclinations remain fixed on the time scale of an undulat
@i.e.,dslm50 holds in Eq.~C23!# the dispersion relation~26!
remains valid for 0, l ,6. Because disclination motion i
catalyzed by absorption and emission of dislocations w
mean spacingjT , the disclination diffusion constant isD5
'(a0 /jT)2D0, where theD0 is the particle diffusion con-
stant. For a surfactant coated water droplet of radiusR0
51 mm one has~for s51023 N/m) v( l 52).100 Hz and
D0.1028 cm2/s. The estimate (a0 /jT)2.1022 suggests
only minor disclination motion during an undulation perio
and the spectrum is unaffected for 0, l ,6.

III. DYNAMICS AND INSTABILITIES IN CYLINDRICAL
GEOMETRIES

Next, we will discuss the influence of hexatic order on t
Plateau-Rayleigh instability@39,40# of cylindrical liquid jets
coated with a hexatic monolayer. Because the Gaussian
vature of a cylinder is zero, defect-free hexatic order is p
fectly compatible with this geometry in the absence of def
mations. However, the hexatic stiffness constant will res
deformations leading to a nonzero Gaussian curvature.
complication of defects in the ground state is absent
hexatic order on cylinders.

The surface vector of a cylinder of undeformed radiusR0
is given by

RW ~x!5~R0 cosw,R0 sinw,z!, ~37!

with x5(w,z). See again Appendix A for the fundament
geometrical quantities of the cylinder in terms ofRW .

The free energy of liquid cylinders~jets! is given by Eq.
~1!, where nowdA5R0dwdz. The displacement field can
again be chosen to be purely normal, i.e.,

RW 85RW 1R0zNW , ~38!

where nowNW (w,z)5(cosw,sinw,0). The displacement field
can be expanded in plane waves

z~w,z,t !5(
k,m

r km~ t !eikzeimw, ~39!

where k52pn/L, with n50,61,62, . . . for a cylinder
with length L ~we assume periodic boundary conditio
along the axis of the cylinder for simplicity! and

(
k,m

[ (
n52`

`

(
m52`

`

. ~40!

We neglect the density outside the jet (rv!r l), and make
an ansatz for the velocity potential inside in terms of cyl
drical coordinates (r ,w,z),

F~r ,z,w,t !5(
k,m

Akm
, ~ t !eikzeimwI m~kr !, ~41!
2-6
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HEXATIC UNDULATIONS IN CURVED GEOMETRIES PHYSICAL REVIEW E67, 031502 ~2003!
where I m(kr) is the Bessel function of the first kind o
imaginary argument@41#. Equations~14! and ~16! remain
valid and yield

Akm
, ~ t !5R0

ṙ km~ t !

kIm8 ~kR0!
, ~42!

whereI m8 (x)[dIm(x)/dx.
If the cylinder is deformed, its surface area and volu

change. Equation~C4! of Appendix C implies

A82A52pR0LF r 001
1

2
( 8
k,m

~R0
2k21m2!ur kmu2G ,

~43!

and with Eq.~C6! one has

V82V52pR0
2LS r 001

1

2
( 8
k,m

ur kmu2D , ~44!

where thek50, m50 term is excluded from the sum(k,m8 .
Upon choosing

r 0052
1

2
( 8
k,m

ur kmu2, ~45!

the displacement field keeps the volume fixed~corresponding
to an incompressible liquid jet! and the difference in interfa
cial free energy between deformed and undeformed cylin
becomes

Fi82Fi5pR0Ls( 8
k,m

~R0
2k21m221!ur kmu2. ~46!

Note that this energy difference vanishes fork50, m561
deformations, corresponding to a uniform sideways tran
tion.

We next calculate the hexatic contribution to the free
ergy of the deformed cylinder. Equation~C13! with back-
ground Gaussian curvatureG50 leads to the Gaussian cu
vature of the deformed state, namely,

G8~w,z!5(
k,m

k2r kmeikzeimw. ~47!

Equation~4!, together with the representation of the Gree
function of the Laplacian on the cylinder,

G~x,x8!52
R0

2pL
( 8
k,m

eikzeimwe2 ikz8e2 imw8

k2R0
21m2

, ~48!

then yields for the hexatic free energy of the deformed c
inder

Fh85
pL

R0

KA(
k,m

ur kmu2
k4R0

4

k2R0
21m2

. ~49!

Equation~14! now leads to
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r lR0r̈ km~ t !
I m~kR0!

kIm8 ~kR0!
5pkm52

dFd8$r km%

2pR0
2Ldr km*

, ~50!

where

Dp~z,w!5(
k,m

pkmeikzeimw. ~51!

Upon settingr km5r km
0 e2 iv(k,m)t one finds the fluctuation

spectrum of a liquid cylinder with surface hexatic orde
namely,

v2~k,m!5
s

r lR0
3

I m8 ~kR0!

I m~kR0!
R0k

3FR0
2k21m2211

KA

sR0
2

k4R0
4

k2R0
21m2G . ~52!

When KA50, Eq. ~52! shows v2,0 for m50 and
R0

2k2,1. The cylinder thus becomes unstable ifL.2pR0,
leading to the well-known Plateau-Rayleigh instabili
@39,40#. However, forKAÞ0 the stability of liquid cylinders
is enhanced by hexatic order. The ‘‘fastest growing’’ mo
kf , which maximizes (2v2), is now given by

d

dxU
x5R0k

I m8 ~x!

I m~x!
xS 12x22

KA

sR0
2

x2D 50, ~53!

wherex5kR0. Thus, close to the hexatic-to-liquid transitio
where KA /sR0

2.1, one hasR0
2kf

2.0.25 compared with
R0

2kf
2.0.48 for KA50. Thus, the characteristic waveleng

l f52p/kf of the undulations of the unstable cylinder is si
nificantly stretched by the presence of hexatic order. As
shall see in the following section, hexatic order has a sim
effect in stabilizing multielectron bubbles against fission.

IV. HEXATIC DYNAMICS AND FISSION
IN MULTIELECTRON BUBBLES

Next, we will discuss multielectron bubbles in liquid4He.
These bubbles can undergo both a freezing transition an
shape instability. Hexatic order affects both the fluctuat
spectrum and the instability threshold for fission. The fr
energy of a multielectron bubbleFb5Fd1Fc is that of a
droplet @cf. Eq. ~1!# with an additional Coulomb contribu
tion, i.e.,

Fb5sE dA1
1

2
KAE dA Din

jDinj

1
1

2«E dAE dA8
r~x!r~x8!

ux2x8u
. ~54!

Here,r(x) denotes the charge distribution on the surface a
« is the dielectric constant of liquid4He @42#. In an equilib-
rium fluid, r5eN/4pR0

2 for a sphere withN electrons.
2-7
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The assumptions underlying this theoretical descript
are the following.

~i! The electrons are restricted to the two-dimensio
manifold given by the liquid-vapor interface. This is justifie
since density functional calculations~cf., e.g., Refs.@43,26#!
show that the electrons form a thin layer of thicknessd
!R0 on the surface withd.1 –4 nm.

~ii ! One can neglect the effects on the shape of
charged bubbles arising from~a! applied electric fields which
trap or hold the electrons;~b! the movement of the bubbles i
the system; and~c! gravity. Assumption~a! is justified since
typical external electric fields are of the orderE.3 kV/cm
@25#, while a charged sphere with radiusR0.10 mm and
N.107 produces an electric field'300 times larger,Esph

5(eN/2R0
2).1 MV/cm. Similar arguments apply to~b!

since typical drag forces are much weaker than the Coulo
forces. Assumption~c! is justified sinceR0 is much smaller
than the capillary lengthl c of liquid helium, l c[A2s/r lg
.0.6 mm.

~iii ! We assume that the electrons can be treated cla
cally, i.e., corrections arising from quantum mechanics
be ignored. For electrons on charged bubbles this is justi
since at the melting temperature quantum mechanical cor
tions become only relevant at higher densities,n
*1012 cm22 @25#.

Upon once again neglecting defects by settingslm[0, l
.0, the stationary solutions of the free energy~54! are
spherical bubbles. To determine the equilibrium radius
use the partition function of a noninteracting ideal gas
describe the vapor phase. The free energy of a sphe
bubble is then given by

F~V,T!5min
R

H kBTNHeS ln
NHelT

3

4pR3/3
21D

1pex

4p

3
R314psR21

N2e2

2R« J , ~55!

whereNHe is the number of helium atoms,lT the thermal
wavelength, andpex the pressure outside of the bubbl
Minimization with respect to the first term only yields, o
course, ideal gas behavior, i.e.,

pinV5NHekBT, ~56!

where pin is the pressure inside the bubble. However,
taking all contributions into account the equilibrium radi
R0 of a charged multielectron bubble is determined by
Laplace equation

pin2pex52
s

R0
2

~eN!2

8pR0
4«

. ~57!

Thus, one obtains~for pin'pex) as typical length scale fo
R0 the classical Coulomb radius

Rcl
3 5

~eN!2

16ps«
. ~58!
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Within the approximations described above, the fluctu
tion spectrum of a multielectron bubble with hexatic ord
can be calculated. Compared with the discussion of Sec
the only difference arises from the Coulomb contribution.
derived in Appendix C 3 one has forrv!r l ~thus, neglecting
the density inside the bubble!

Dplm5
~eN!2

4pR0
4«

~ l 21!r lm . ~59!

By combining the last equation with Eqs.~20!, ~23!, and~24!
one now finds~for l .0) @44#

v25
s

r lR0
3 ~ l 21!~ l 11!

3F ~ l 12!24
Rcl

3

R0
3

1
KA

sR0
2

~ l 21!~ l 12!2

l ~ l 11! G . ~60!

For KA50 spherical bubbles become unstable to fission
R0,Rcl , i.e., v2( l 5 l c),0 for R0,Rcl and l c52 @26,27#.

For KAÞ0 the stability of charged bubbles isenhancedby
the hexatic order of the electrons on the sphere. Thus,
Tm,T,Ti the unstable mode is stilll c52, but nowv2( l c

52),0 for R0,Rc8 with Rc8,Rcl , cf. Fig. 4. The icosahe-
dral symmetry of the deformed shape withslmÞ0 is too high
to have an influence on the fission instability which occurs
l 52, justifying our neglect of disclination defects.

Because the electrons~which determineKA) are far apart
relative to the helium atoms~which determines) KA /sRcl

2

will be smaller than for droplets of supercooled liquid meta
when R0.Rcl . For helium bubbles withN.106 one has
Rcl.10 mm and we expect~see Sec. VI! that (KA /sRcl

2 )

FIG. 4. Schematic stability diagram for multielectron bubbl
with hexatic order. The stability of a spherical bubble with radiusR
and chargeeN depends on the temperatureT. For hexatics in the
temperature rangeTm&T&Ti , bubbles with radiiRcl,R,Rc8 are
stable, whereas forT*Ti they are not. The enhanced stability is du
to internal hexatic order. We expect an even larger region of
hanced stability for droplets with crystalline order@45#.
2-8
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HEXATIC UNDULATIONS IN CURVED GEOMETRIES PHYSICAL REVIEW E67, 031502 ~2003!
.1024. Chargedmetal droplets also undergo the same fi
sion instability. Thus, it might be possible to detect the on
of hexatic order by investigating the stability of charged l
uid droplets in Paul traps@19#.

In the flat space limit (l→`, k5 l /R0 fixed! one obtains,
with n5eN/4pR0

2,

rexv
2~k!5sk324pk2

n2

«
, ~61!

in agreement with Ref.@25#. As Eq. ~61! shows, planar He
interfaces are unstable to deformations withk,kc
54pn2/s«. This is the ‘‘dimple’’ instability discussed in the
Introduction which triggers the initial creation of multiele
tron bubbles.

V. DYNAMICS IN HEXATIC MEMBRANES
WITH A SPHERICAL TOPOLOGY

As a last application, we discuss the influence of hexa
order on the fluctuations of a spherical vesicle. The free
ergy F of a hexatic membrane is given by@17,28#

F5Fb1Fg1Fh[
1

2
kE dA~2H !21kGE dA G

1
1

2
KAE dA Din

jDinj , ~62!

where we have neglected spontaneous curvature, andk and
kG are the mean and Gaussian rigidity, respectively.

The equilibrium shape of enclosed vesicles~provided flu-
ids inside and outside cannot equilibrate on experime
times scales! often corresponds to the minimum of the fre
energy ~62! with prescribed surface areaA and volumeV
@46# ~see also Ref.@47#!. The area and volume constrain
can be implemented by considering the modified free ene

F̃5F1Fa1Fvol[F1E dAs~x!1E dVp~x!. ~63!

Often, a constant pressure difference between outside
inside p[pex2pin[p.2p, and surface tensions are
taken as Lagrange multipliers to enforce these constra
Here, we allow for both spatially varying surface tensi
s(x) and pressurep(x) to enforce local incompressibility
@cf. Eq. ~72! below#. In many situations, the average valu
of s andp will depend on the volume captured by a vesic
of a given area at the moment of its formation.

In the following analysis, we only consider surface shap
which are topologically equivalent to a sphere. Then,
second term of Eq.~62! can be neglected, since it is a top
logical invariant. We again temporarily ignore discrete d
clination defects and show later that their inclusion does
affect characteristic frequenciesv( l ) with l ,6.

Becausek plays a similar role for vesicles ass plays for
droplets, hexatic order should lead here to similar effects
the spectrumv( l ). For vesicles the dynamical fluctuation
take place at very small Reynolds numbers@48#. Therefore,
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the convective and the inertial terms can be neglected in
Navier-Stokes equation~13a! for the surrounding bulk fluid.
Thus, here we must solve the Stokes equation

¹W p5h¹2vW , ~64!

whereh and vW denote now the shear viscosity and the v
locity of the bulk fluid, assumed to be the same inside a
outside the membrane. The undulating membrane impo
the boundary condition

NW •vW ~rW !urW5RW 0(11z)5R0ż, ~65!

whereRW 0 is given by Eq.~2! and the membrane velocity b

R0ż[R0

]z~u,w,t !

]t
. ~66!

The following analysis simplifies somewhat by imposin
boundary conditions for the components¹W (NW •vW ) and¹W 3vW
instead ofvu andvw . Then,

NW •¹W @NW •vW ~rW !#urW5RW 0(11z)52¹W •~R0żNW !, ~67!

NW •@¹W 3vW ~rW !#urW5RW 0(11z)50, ~68!

where Eq.~67! follows from the condition¹W •vW 50.
We proceed now as follows@46#. For a given~deformed!

vesicle shape the bending forces on its surface are kno
These forces must be balanced by the viscous stresses
induced flow fieldvW can be calculated by using Lamb’s s
lution with these boundary conditions. Details about this
lution have been given by several authors, cf., e.g., R
@46,49,50#. The main formulas are summarized in Append
D.

As shown in Appendix D, the viscous forcePW [PnNW

1PW t associated with Lamb’s solution@see Eqs.~D1! and
~D4!# is given by Eqs.~D12!, ~D13!, and ~D14!. By using
Eqs. ~D9! and ~D10!, one then obtains for the normal an
tangential force differences

Pn
,~x!2Pn

.~x!5(
l 51

`

(
m52 l

l

ṙ lm~ t !h

3
~2l 11!~2l 212l 23!

l ~ l 11!
Y lm~x!, ~69!

and

PW t
,~x!2PW t

.~x!5(
l 51

`

(
m52 l

l

ṙ lm~ t !R0h
2l 11

l ~ l 11!
¹W Y lm~x!,

~70!

wherePW t
, andPW t

. refer to forces inside and outside of th
vesicle, respectively.

The tangential motion of the fluid along the membra
induces lipid flow within the membrane itself. However, th
membrane stays locally incompressible. This constrain
2-9
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P. LENZ AND D. R. NELSON PHYSICAL REVIEW E67, 031502 ~2003!
enforced by the local surface tension in Eq.~63!, which bal-
ances the tangential component of the stress vector. T
with

s~x,t !5s01(
l 51

`

(
m52 l

l

s lm~ t !Y lm~x!, ~71!

one finds~for l>1)

s lm~ t !5 ṙ lm~ t !R0h
2l 11

l ~ l 11!
. ~72!

Since any nonstationary membrane configuration exer
local force on the surrounding fluid the shape displacem
leads to a generalized pressure discontinuityDp(x) which
balances the normal component of the pressure discontin
between the inside and outside

Pn
,~x!2Pn

.~x!5Dp~x!, ~73!

whereDp(x) can be expanded in spherical harmonics as
Eq. ~19!. In order to determine the coefficientsplm in Eq.
~19! now the variation of the vesicle free energy has to
calculated. Details are presented in Appendix C.

The deformed surface is characterized by the Gaus
curvature@see Eq.~C14!#

G8~x!5
1

R0
2

1
1

R0
2 (

l ,m
~ l 21!~ l 12!r lmY lm~x!, ~74!

and the mean curvature given by Eq.~35!. The volume
change is given by Eq.~21! and the change in surface area
Eq. ~C7!, which becomes

A82A5R0
2S 2A4pr 001(

l 51

`

(
m52 l

l

ur lmu2@11 l ~ l 11!/2# D
1O~r lm

3 !. ~75!

The volume constraint can again be implemented by con
ering displacements which fulfill Eq.~22!. Then, upon defin-
ing the excess area~relative to a sphere! by dA5A
24pR0

2, the area constraint reads

1

2
R0

2(
l 51

`

(
m52 l

l

ur lmu2~ l 21!~ l 12!5dA[const. ~76!

Similarly, the area term of Eq.~63! for the deformed sphere
becomes

Fa85Fa12R0
2(

l ,m
s lmr lm* 1

1

2
s0R0

2

3(
l 51

`

(
m52 l

l

ur lmu2~ l 21!~ l 12!. ~77!

Finally, it has been shown in Refs.@51,52# that the bending
energy of a quasispherical vesicle is given by
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Fb85Fb1
1

2
kR0

2E dAzLz, ~78!

whereFb58pk andL can be evaluated on an undeform
sphere to leading order inz,

L5DiDiD
jD j1

2

R0
2

DiDi . ~79!

Upon using the decomposition~10! of z(x,t), one finds

Fb85Fb1
1

2
k(

l 51

`

(
m52 l

l

ur lmu2l ~ l 11!~ l 21!~ l 12!.

~80!

We now insert Eqs.~77!, ~24!, and~80! into Eq.~19! ~with
F̃8 replacingFd8) and set againr lm5r lm

0 (t)e2 iv( l )t. Upon
equating the pressure discontinuity in Eq.~19! to the normal
force difference~69!, we find for the fluctuation spectrum o
spherical vesicles with hexatic order~for l .0)

v~ l !52 i
G~ l !

hR0
3 ~ l 21!~ l 12!

3Fk l ~ l 11!1s0R0
21KA

~ l 21!~ l 12!

l ~ l 11! G , ~81!

with

G~ l ![
l ~ l 11!

~2l 11!~2l 212l 21!
. ~82!

Note thatv( l ) vanishes forl 51, corresponding to transla
tions of the vesicle as a whole.

The eigenfrequenciesv( l ) explicitly depend on thel 50
component of the tensions0 which acts as Lagrange multi
plier for the area. Since the value ofs0 is generally not
known, one has to use the area constraint~76! ~and the
fluctuation-dissipation theorem! to expresss0 in terms of
dA. Which modes pick up the excess area depends on
ratio g̃5sR0

2/k. As shown in Ref.@47#, for floppy mem-

branes~i.e., small g̃) each mode contributes equally to th
excess area, whereas for stiff membranes~i.e., largeg̃) only
the lowest mode (l 52) will develop a large amplitude@53#.

For the purpose of estimating the effect of hexatic ord
we proceed in a different way. The area constraint becom
much easier to handle if the volume constraint can be
glected. By assuming that the vesicle is permeable to b
water and larger molecules, the area constraint can be in
porated directly~again to leading order in ther lm’s! by
choosing

r 0052
1

2A4p
(
l 51

`

(
m52 l

l

ur lmu2S 11
l ~ l 11!

2 D . ~83!
2-10
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HEXATIC UNDULATIONS IN CURVED GEOMETRIES PHYSICAL REVIEW E67, 031502 ~2003!
Then, A85A and one can sets050 in Eq. ~81!. Equiva-
lently, we focus on floppy vesicles, formed under conditio
such thatsR0

2!k.
In the flat space limit ofs050, largeR0 and l @1 with

k[ l /R0 fixed, one has

v.2 i
1

4h Fkk31
KA

R0
2

kG . ~84!

As for the liquid droplets discussed in Sec. II, the hexa
contribution drops out asR0→` and we recover the resu
for undulation modes of a flat fluid bilayer@54#. The fre-
quency shift~81! depends on the ratioKA /k. However, for
large vesicles we expect thatKA.4k ~a universalresult for
flat hexatic membranes at long wavelengths@55#! leading to
a frequency enhancement in Eq.~81! ~with s050) by a fac-
tor .13/9.1.44 for the l 52 quadrupole mode. Note th
relatively pronounced effect of hexatic order. In general,
expect the largest change in the characteristic frequencie
floppyvesicles withg̃5sR0

2/k!1.
Similar to droplets, the presence of an icosahedral arra

defects in hexatic membranes leads to an equilibrium c
figuration with a deformed surface. For vesicles, the co
plete first variation of the free energyF̃ @see Eq.~63!# reads

d (1)F̃5
1

2
kE d2xAg~x!$@2H~x!#2d (1)g~x!

18H~x!d (1)H~x!%1s0E d2xAg~x!d (1)g~x!

1E d2xAg~x!pd (1)V~x!2KAE d2xAg~x!
1

R0
2

3(
l 51

`

(
m52 l

l
~ l 21!~ l 12!

l ~ l 11!
slmY lm~x!

3 (
l 8,m8

r l 8m8
* Y l 8m8

* ~x!, ~85!

where ~again! d (1)g is given by Eq.~C4!, d (1)H by Eq.
~C16!, and d (1)V by Eq. ~C6!. Since integration by parts
shows that

E d2xAg~x!H~x!¹2z~x!5E d2xAg~x!z~x!¹2H~x!,

~86!

the equilibrium shape equation for quasispherical vesic
with hexatic order becomes now

p12s0H~x!24H~x!k@H2~x!2G~x!#22k¹2H~x!

5KA

1

R0
3 (

l 51

`

(
m52 l

l
~ l 21!~ l 12!

l ~ l 11!
Y lm~x!slm . ~87!
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Upon making again the ansatz~32! ~where 2H0s01p50)
and usingG5G012dH̃/R0, one finds for the mean curva
ture

2H~x!52H01
1

R0
(
l 51

`

(
m52 l

l
KA

k l ~ l 11!1s0R0
2

3
~ l 21!~ l 12!

l ~ l 11!
slmY lm~x!, ~88!

where the static surface deformation coefficients in
ground state are given by

r lm
0 5slm

KA

k l 2~ l 11!21s0R0
2l ~ l 11!

, ~89!

for l .0 andr lm
0 50 for l 5m50.

However, icosahedral symmetry again insures thatslm

50, and hencer lm
0 50, unlessl 56,10,12, . . . , at least for

floppy, approximately spherical vesicles. Hence, correcti
of order slm have no influence on the frequenciesv( l ) for
small l. Just as for hexatics on liquid droplets, disclinati
motion is negligible during an undulation period and the d
persion relation~81! remains valid for 0, l ,6. This can be
seen by using an estimate similar to that of Sec. II B. He
v( l 52).40 Hz for a 1mm vesicle and the disclination dif
fusion constant is D5'(a0 /jT)2Dlipid , where Dlipid
.1028 cm2/s and (a0 /jT)2.1022.

Finally, we show that our assumption that the regular p
of the bond-angle field relaxes rapidly on the time scale
undulation modes is indeed justified for vesicles with hexa
order. As follows from Eq.~B8! the relaxational dynamics
for u reg is described by

hm

du reg

dt
5KA¹2u reg, ~90!

wherehm is the shear surface viscosity of the membrane.
simplicity, we have neglected in the last equation defe
which are immobile on the time scale of ripples anyho
Upon expandingu reg in terms of spherical harmonics

u reg5(
l 50

`

(
m52 l

l

u lm
reg~ t !Y lm~x!, ~91!

and setting

u lm
reg5u lm

0 e2 ivu( l )t, ~92!

one finds

vu~ l !52 i
KA

hmR0
2

l ~ l 11!. ~93!

Thus, by comparing with the undulation spectrumv given
by Eq. ~81! one obtains withhm5hh ~where h.100
21000 nm for bilayers! for floppy vesicles and largel,
2-11
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v~ l !

vu~ l !
.

k

4KA

h

R0
l . ~94!

Thus,v( l )!vu( l ) for h!R0, justifying our assumption for
large vesicles. Similar arguments apply to spherical drop
and bubbles and cylindrical geometries.

VI. EXPERIMENTAL CONSEQUENCES

We conclude by discussing the implications of our resu
for possible experiments. As discussed in the Introduct
one of our main motivations was to search for dynamic s
natures of hexatic order in curved geometries, order whic
difficult to detect by other means. As shown in Sec. V, t
frequency shift due to hexatic order is particularly large
vesicles. Thel 52 quadrupole relaxation rate can be e
hanced by a factor.1.44 due to bond-orientational orde
and should be experimentally detectable by measuring
decay rate of fluctuations by, e.g., video or fluorescence
croscopy@46#.

For liquid droplets the influence of hexatic order on t
fluctuation spectrum is somewhat weaker. For the magnit
of the hexatic stiffness one has the estimate@1#

KA5C~T!S jT

a0
D 2

, ~95!

wherea0 is the lattice constant,jT is a translational correla
tion length which diverges asT approachesTm , andC(T) is
a prefactor. WhenT@Tm one hasC(T).2Ec(a/a0)2 @1#,
whereEc is the energy of a dislocation core with diamet
a'a0. On the other hand, for the liquid metal dropletss
.kBT/a0

2 and withC(T).kBT one hasKA /sR0
2.1 for jT

.R0. Thus, hexatic order should also have experiment
relevant consequences for the fluctuation spectrum of liq
droplets and cylinders when the translational correlat
length grows to become comparable to the sphere siz
cylinder radius. As we saw in Sec. III, the Plateau-Rayle
instability will also be modified forKAÞ0. As the liquid
cylinder decays into a chain of droplets the distance betw
the droplets will depend on the ratioKA /sR0

2, as follows
from Eq. ~52!. For KA /sR0

2.1 one has l f52p/kf

.12.6R0 as typical distance between the droplets in contr
to l f.9.0R0 appropriate toKA50 @39,40#.

For multielectron bubbless is determined by the distanc
b0 between the helium atoms. Here, we expect thats
.3kBTm /b0

2, whereTm is the melting temperature andb0

.3 Å for liquid helium. From the experiments by Grime
and Adams@4# it is known that for the planar case the d
mensionless ratio Gm[(e2Apn/kBTm).140 and Tm
50.73 K for a charge densityn5109 cm22. Thus, for 4He
one hass.331024 J/m2 at T'Tm . For helium bubbles
with N.106 one hasa05(4pRcl

2 /N)1/2.300 Å and the
critical radius Rcl.10 mm. By using theT50 result Ec

.0.1e2/a0 @7# one findsKA /sRcl
2 .1024. It is worth men-

tioning that KA /sRcl
2 ;1/AN, since KA;NEc and Ec

;Rcl
2 /N3/2. Thus, the influence of hexatic order will b

somewhat stronger for bubbles with smallerN.
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Thus, hexatic order has only a weak influence on the
bility of multielectron bubbles. But with sophisticated e
perimental setups it still might be possible to measure
effects. A possible scenario to study fission could, e.g., m
use of the fact that bubbles become compactified as t
move under the influence of an external field away from
liquid-vapor interface towards the positive electrode i
mersed in the liquid. Thus, if forT.Ti multielectron
bubbles with an initial radiusR0 are stable to fission up to
distanceh from the interface then they will be observed at
somewhat larger distanceh1dh for Tm,T,Ti .

It also might be possible to experimentally confirm o
theoretical predictions in the regime of stable bubbles
measuring the characteristic frequencies of an oscilla
bubble which is stabilized by the balance of bouancy a
electric field forces at a constant height below the surfa
Our predictions also apply to multi-ion bubbles which e
perimentally can be realized by charging helium films w
ions instead of electrons@20#.

Finally, for charged droplets in Paul traps similar effec
should be observable by, e.g., trapping a droplet and shoo
charges on it until it undergoes fission. For this purpose
might be necessary to use more conventional liquids an
perform the experiments at much higher temperatures.
sion with ordered ions on droplets can still be achieved
using ions with high chargeZe sinceTm}Z2e2An. For ex-
ample, for droplets withR0.10 mm andN.106 the melting
transition should occur at room temperature forZ57. Pro-
vided the surface tension of the liquid is large enough
droplets will still be stable at these parameter values.

In summary, we have shown that two-dimensional hexa
order should lead to experimentally observable effects i
variety of systems with spherical and cylindrical geomet
Similar effects could also occur in related systems such
e.g., cylindrical vesicles. Here, we expect that the las
induced pearling instability will be modified by the presen
of hexatic order@56,57#.

Crystalline order will also alter the fluctuation spectru
of spherical and cylindrical droplets and membranes@58–
60#. The effects discussed here should be evenlarger if the
hexatic phase is bypassed and one freezes directly in
two-dimensional solid with shear modulusm. The resulting
frequency shifts can be estimated by replacingKA by mR0

2 in
the formulas above. Details will be given in an upcomi
publication@45#.
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APPENDIX A: PARAMETRIZATION OF SHAPE

Here, we review the elementary differential geome
needed to determine all relevant geometrical properties,
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the first and second fundamental forms, of a surface in te
of its surface vectorRW . For a more extensive review, see Re
@61#. For simplicity, we specialize here to spherical and c
lindrical surfaces.Deformationsof these shapes are treate
in Appendix C.

For an undeformed sphere with constant radiusR0 one
can choosex5(x1,x2)[(u,w) with polar coordinatesu and
w. The surface vector is then given by

RW ~u,w!5R0~sinu cosw,sinu sinw,cosu!. ~A1!

The first fundamental form is defined by

gi j [RW i•RW j , ~A2!

with the covariant vectors

RW j[RW , j[]sjRW [
]RW

]sj
. ~A3!

On the sphere the vectors$RW 1(x),RW 2(x)% form an orthogonal
~but not orthonormal! basis in the tangential plane at th
point x, cf. Fig. 5. The contravariant components are giv
by RW k5gkiRW i , wheregi j is the inverse ofgi j , i.e., gi j gjk

5dk
i . We use the summation convention throughout. W

the parametrization of Eq.~A1!, we have

RW 15R0~cosu cosw,cosu sinw,2sinu!,

RW 25R0~2sinu sinw,sinu cosw,0!. ~A4!

The area element is generally given bydA5Agdx1dx2,
where

g[det~gi j !. ~A5!

For a sphere the first fundamental form is given by

~gi j !5S R0
2 0

0 R0
2 sin2u

D ~A6!

anddA5R0
2 sinududw.

FIG. 5. Orthonormal basis vectorseW u and eWw of the tangential

plane of the sphere and basis vectorseWw and eW z of the tangential

plane of the cylinder. One haseW u5RW 1 /R0 , eWw5RW 2 /R0 sinu for the

sphere, see Eq.~2!. For the cylinder,eWw5RW 1 /R0 and eW z5RW 2, see
Eq. ~37!.
03150
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The mean curvatureH and the Gaussian curvatureG are
determined by thesecondfundamental form, which is de
fined by

bi j [RW i j •NW 52RW i•NW j , ~A7!

whereNW is the ~local! unit normal vector to the surface

NW ~x1,x2![
RW 1~x1,x2!3RW 2~x1,x2!

Ag
, ~A8!

and the second equality of Eq.~A7! follows from RW i•NW
50. In terms of the second fundamental form, and up
raising an index ofbi j via the operationgikbk j[bj

i , we have

2H52bi
i and G5det~bj

i !5
b

g
[

det~bi j !

det~gi j !
. ~A9!

See Fig. 6. For a sphere one has

NW 5
RW

R0
5~sinu cosw,sinu sinw,cosu! ~A10!

and the second fundamental form becomes

~bi j !5S 2R0 0

0 2R0 sin2u D . ~A11!

It is easy to check thatbj
i 52d j

i /R0 and hence,H51/R0 and
G51/R0

2 in this case.
The covariant derivative of a vector with covariant com

ponentsai and contravariant componentsaj is defined by
@62#

Diaj5aj ,i2akG i j
k and Dia

j5ai
j1akGki

j . ~A12!

Here, theG i j
k are the Christoffel symbols of the second kin

They are related to the Christoffel symbols of the first ki
G ik j by G i j

k 5gklG i l j , where

FIG. 6. Principal curvatures for spheres and cylinders. In b
cases the principal directions of curvature are drawn. For a sp
both principal curvatures are identical, i.e.,C15C251/R. For a
cylinder one hasC151/R, C250. The principal curvatures are th
eigenvalues of (2bi

j ). Thus, 2H52(C11C2) andG5C1C2.
2-13
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G ik j[
1

2
~] igk j1] jgik2]kgi j !. ~A13!

Note that theG ik j are symmetric in the first and last inde
i.e.,

G ik j5G jki . ~A14!

For a sphere with polar coordinates, we have

Guu
u 5Guu

w 5Guw
u 5Gww

w 50, Guw
w 5

cosu

sinu
,

Gww
u 52sinu cosu. ~A15!

As can be shown by a direct calculation, the covariant
rivatives ofgi j , gi j , andd j

i vanish. Covariant derivatives d
not commute, in general. For scalars one hasDiD j f
5D jDi f if ] i] j f 5] j] i f . However, for vectors the commu
tator of covariant derivatives is given by

@Di ,D j #ak5alRk ji
l . ~A16!

Here,Rk ji
l is the ~mixed! Riemann curvature tensor

Rk ji
l [] jGki

l 2] iGk j
l 1Gki

mGm j
l 2Gk j

mGmi
l . ~A17!

In two spatial dimensions one has a particularly simple re
tion

Rk ji
l 5gkmg lmg j i G, ~A18!

whereg i j is the antisymmetric contravariant tensor,

g i j [~d1
i d2

j 2d2
i d1

j !/Ag, ~A19!

with covariant counterpartgkl5g i j gikgjl . Note, Eq.~A18!
shows that the Gaussian curvature is determined by the

FIG. 7. Geometrical interpretation of the Riemann curvat

tensor on the sphere. Parallel transport of the vectorVW along the

path shown in the figure leads to a rotation (VW 82VW ) l

5Rk ji
l Vkdxjdxi , whereRk ji

l is the Riemann curvature tensor, d
fined in Eq.~A17!. As a consequence, on a curved surface covar
derivatives do not commute. Indeed,@Di ,D j #h

i5Gh j , whereG is
the Gaussian curvature which in two dimensions determines
components ofRk ji

l .
03150
-
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rst

fundamental form only. This is the content of the famo
theorema egregium of Gauss. A geometrical interpretation
the Riemann curvature tensor is given in Fig. 7.

For a sphere the nonzero components of the Riemann
vature tensor are

R212
1 52R221

1 5
b

g11
5sin2u, 2R112

2 5R121
2 5

b

g22
51.

~A20!

Covariant derivatives have another useful property; in
grals over covariant derivatives of vector fields can be in
grated by parts, similar to vector fields in flat space. This
the content of the divergence theorem: for an arbitrary clo
surfaceM ~i.e., a surface with no boundary,]M50) one has

E
M

dADiv
i50, ~A21!

for any vectorv i . Here,Div
i5(1/Ag)] i(Agv i)[“

W
•vW is the

divergence ofvW on a curved surface. Finally, the Laplacian
defined byD5DiDi . It becomes on the sphere

Dsph5
1

R0
2 H 1

sin2u

]2

]w2
1

1

sinu

]

]u S sinu
]

]u D J .

~A22!

Note that the eigenfunctions ofDsph are spherical harmonic

DsphY lm5
2 l ~ l 11!

R0
2

Y lm . ~A23!

For undeformed cylinders with radiusR0 one can choose
x5(w,z). The surface vector is then given by

RW ~x!5~R0 cosw,R0 sinw,z!. ~A24!

Here, the first fundamental form is given by

~gi j !5S R0
2 0

0 1
D ~A25!

anddA5R0dwdz.
The second fundamental form becomes

~bi j !5S 2R0 0

0 0D . ~A26!

Thus,G050 andH051/2R0.
Since for cylindersgi j is independent ofw and z all

Christoffel symbols vanish, i.e.,G i j
k 50. Thus,] i5Di and

the Laplacian becomes for this geometry

Dcyl5] i] i5
1

R0
2

]2

]w2
1

]2

]z2
. ~A27!

The eigenfunctions are plane waves

e
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Dcyle
ikzeimw52

1

R0
2 ~k2R0

21m2!eikzeimw. ~A28!

APPENDIX B: HEXATIC FREE ENERGY

In this appendix, we derive a useful representation of
hexatic free energy for vesicles, droplets and multielect
bubbles. The discussion is kept rather general since it ha
be valid for both deformed and undeformed spheres and
inders. The discussion here generalizes earlier approa
@28,55# to ~arbitrary! curved geometries with defects. Se
also Ref.@35#.

Consider, the free energyFh introduced in Sec. II, i.e.,

Fh5
1

2
KAE d2xAgDin

jDinj . ~B1!

We now introduce an orthonormal basis$eWa% of the tangen-
tial space.~Note that orthonormality is not guaranteed for t
tangent basis vectors discussed in Appendix A; for exam
the ‘‘natural’’ basis vectorsRW u and RW w for the sphere are
merely orthogonal.! Then, for an arbitrary vector fieldVW one
has the contravariant components

VW 5VaeWa , eWa•eWb5dab . ~B2!

Here, Greek indices have been used to distinguish this b
from the$RW i%. The covariant derivative ofVW is now given in
terms of

DiVa5eWa•~] iVW !, ~B3!

so that

DiVa5] iVa2v ibaVb, ~B4!

with Va5VbeWb•eWa and

v iba5eWb•] ieWa ~B5!

is the affine connection appropriate for this basis@63#. For
orthonormaleWa one hasv iba52v iab . Thus, one can define
a covariant vector fieldAi by

v iab5«abAi , ~B6!

where«ab[da
1db

22da
2db

1 is the Levi-Civita symbol.

We now set,nW 5naeWa . Sincenini5nana51 it is possible
to introduce an bond-angle fieldQ as angle betweennW and
the local reference frame$eWa%with

na515cosQ, na525sinQ. ~B7!

Then,] ina5«abnb] iQ, and it is easy to show that Eq.~B1!
becomes

Fh5
1

2
KAE d2xAg~x!~DiQ1Ai !~DiQ1Ai !. ~B8!
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For sixfold bond-oriented order, we identifyu with u
12p/6, which determines the minimum charge of disclin
tion defects. The vector fieldAi is a ‘‘vector potential’’ asso-
ciated with the Gaussian curvature, i.e.,

DiAj2D jAi5] iAj2] jAi52G~x!g i j , ~B9!

see Ref.@61#. The last result is a consequence of Eq.~A18!
and of the representation of the curvature tensor in this ba
namely,

Rb j i
a 5] jvb i

a 2] ivb j
a 1vb i

g vg j
a 2vb j

g vg i
a . ~B10!

Note that Eq.~B9! allows an explicit construction for the
vector potential for an arbitrary closed surface with a giv
Gaussian curvature, that is,

Aj~x!52gklg l j Dk~x!E d2x8Ag~x8!Gg~x,x8!G~x8!.

~B11!

Here,Gg(x,x8) is the Green’s function for the LaplacianDg ,

DgGg~x,x8!5
d~x2x8!

Ag
. ~B12!

Note that the LaplacianDg depends explicitly on the metric
g, since

Dgf [DiDi f 5
1

Ag
] i~Ag] i f !. ~B13!

We now divide the fieldQ into a regular partQ reg and a
singular partQsing which represents the contribution of de
fects. The regular partQ reg fulfills DiD jQ

reg5D jDiQ
reg;

we assume that this part relaxes rapidly on the time scal
shape deformations. The singular partQsing is related to the
disclination densitys(x) by @cf. Eq. ~5!#

g i j DiD jQ
sing5s~x![

1

Ag
(

i
qid~x2xi !, ~B14!

whereqi562p/6 for disclinations in a hexatic. Thus,

D j~x!Qsing~x!5gklg l j Dk~x!E d2x8Ag~x8!Gg~x,x8!s~x8!,

~B15!

whereGg(x,x8) is the same Green’s function as in Eq.~B11!.
Note that in the gauge defined by Eq.~B11!, one has

DiD
iQsing1DiA

i50, ~B16!

which is the Euler-Lagrange equation of the functional~B8!.
By using Eqs.~B11! and ~B15! the hexatic free energy

~B8! becomes for an arbitrary manifold with metricg and
Gaussian curvatureG(x)
2-15
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Fh52
1

2
KAE d2xAg~x!E d2x8Ag~x8!@G~x!2s~x!#

3Gg~x,x8!@G~x8!2s~x8!#, ~B17!

where we have integrated by parts and used Eq.~B12!.
In the planar case, the ground state has no defects,

s(x)50. Then, usingGg(x,x8)5(1/D)x,x8 , Eq. ~B17! re-
duces to the Liouville action

Fh52
1

2
KAE d2xAg~x!E d2x8Ag~x8!G~x!

3S 1

Dxx8
D G~x8!. ~B18!

APPENDIX C: FREE ENERGY OF DEFORMED SPHERES
AND CYLINDERS

As the spherical shape gets displaced its free ene
changes. In this appendix, we calculate the correspon
contributions arising from~i! the interfacial free energy an
the bending energy~Sec. C 1!, ~ii ! the hexatic free energy
~Sec. C 2!, and~iii ! the Coulomb energy~Sec. C 3!. We begin
by discussing the geometrical properties associated
shape deformations.

1. Geometrical properties and variations of the mean and
Gaussian curvature

The displacement of spherical shapes parameterized
Eq. ~8! leads to new tangent vectors

RW i85RW i2R0zbi
kRW k1R0z iNW ~C1!

5RW i~11z!1R0z iNW . ~C2!

The first fundamental form then changes according to

dgi j [gi j8 2gi j 5RW i8•RW j82RW i•RW j

522R0zbi j 2R0z2bi j 1R0
2z iz j . ~C3!

Correspondingly, the change in the area element is given

Ag1dg5AgS 112HR0z1GR0
2z21

1

2
R0

2z iz i D1O~z3!

~C4!

5AgS 112z1z21
1

2
R0

2z iz i D1O~z3!. ~C5!

The volume change is given by

dV5E dAR0~z1HR0z2!1O~z3!, ~C6!

while the area of the deformed sphere is
03150
e.,

y
g

th

by

by

A85E d2xAg1dg. ~C7!

The spherical harmonic decomposition~10! together with
Eqs.~C5! and ~22! then leads to Eq.~23!.

The change in the second fundamental form has only
be known up to first order inz. The normal vector of the
deformed sphere is given by

NW 85NW 2R0z iRW i1O~z2!. ~C8!

Therefore, the second fundamental form changes accor
to

~bi j !85RW i j8 •NW 85bi j 1R0D jz i1zbi j 1O~z2!. ~C9!

With

~gjk!85gjk12R0zbjk1O~z2!, ~C10!

one finds

~bi
j !852

1

R0
d i

j~12z!1R0D jz i1O~z2!. ~C11!

The resulting Gaussian curvature of the deformed surfac
given by

G85det~bi
j 8!5

b8

g8
5

det~bi j8 !

g1dg
1O~z2!. ~C12!

Therefore,

G8~x!2G~x!522R0HGz1R0g ikg j l bi j Dlzk1O~z2!

~C13!

522Gz2¹2z1O~z2!, ~C14!

which leads, upon expandingG(x) and z(x) in spherical
harmonics, to Eq.~74!.

Similarly, the mean curvature of the deformed surface
given by

22H85~bi
i !85~gi j !8~bi j !8

5~gi j 1dgi j !~bi j 1dbi j !1O~z2!. ~C15!

Therefore,

2H852H22R0z~2H22G!2R0Diz i1O~z2!,
~C16!

which leads via spherical harmonics to Eq.~35!.
Although not derived here, Eqs.~C1!, ~C4!, ~C6!, ~C13!,

and ~C16! actually hold forgeneralgeometries with mean
curvatureH(x) and Gaussian curvatureG(x). These formu-
las will be needed in the analysis of Secs. II B, III, and V
2-16
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2. Hexatic free energy

Next, we calculate the change in hexatic free ener
Since Eq.~B17! holds for arbitrary manifolds one has for th
deformed sphere

Fh852
1

2
KAE d2xAg1dgE d2x8Ag1dg

3@G8~x!2s8~x!#Gg1dg~x,x8!@G8~x8!2s8~x8!#.

~C17!

Here, Gg1dg(x,x8) is the inverse Laplacian defined on th
deformed sphere, i.e.,

Dg1dgGg1dg~x,x8!5
d~x2x8!

Ag1dg
. ~C18!

Furthermore,G8 is given by Eq.~C14!. As the surface gets
displaced the position of the defects might change. This
be taken into account by introducing a disturbed defect
tribution

s8~x!5s~x!1
1

R0
2 (

l 50

`

(
m52 l

l

dslmY lm~x!5G0

1
1

R0
2 S ds00Y00~x!1(

l 51

`

@slm1dslm#Y lm~x!D .

~C19!

The coefficientds00 is determined by disclination ‘‘charg
conservation,’’ i.e.,

E d2xAg1dgs8~x!54p. ~C20!

Thus,

ds00522r 00. ~C21!

Since the coefficientsdslm are of orderz, s8(x), andG8(x)
differ only in order z. Therefore, one can replace in E
~C17! Ag1dg by Ag andGg1dg(x,x8) by Gg(x,x8). Since
for the sphere@35#

G~x8,x9!52(
l 51

`

(
m52 l

l Y lm~u8,w8!Y lm* ~u9,w9!

l ~ l 11!
,

~C22!

one finally gets

Fh85
1

2
KA(

l 51

`

(
m52 l

l ur lm~ l 21!~ l 12!2~slm1dslm!u2

l ~ l 11!

1O~z2slm!, ~C23!

a result needed in Secs. II and V.
03150
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3. Coulomb energy

The force~per unit area! acting on a dielectric~with di-
electric constant«) contributed by an arbitrary electric fiel
EW is given by@27#

p5
E2

«8p
. ~C24!

Then, in terms of the electrostatic potentialc, EW 52¹W c
with ¹2c50, and one can make the ansatz@for r .R0(1
1z)]

c5
eN

r
1(

l ,m
clmY lmS R0

r D l 11

. ~C25!

The liquid-vapor interface has to be a surface of const
potential. Thus,c(r 5R01R0z)5const. Upon settingclm
5crlm , wherec is a constant, one then finds

clm5
eN

R0
r lm ~C26!

and

EW 52eW r

]

]r U
r 5R01zR0

c~r !5
eN

R0
2 S 11(

l ,m
~ l 21!r lmY lmDeW r .

~C27!

Thus,

p5
~eN!2

8pR0
4«

S 112(
l ,m

~ l 21!r lmY lm1O~r lm
2 ! D .

~C28!

APPENDIX D: LAMB’S SOLUTION FOR SPHERICAL
RIPPLES

Here, we present the main features of Lamb’s solution
obtaining the fluid velocity fields from the surface stress
We follow here closely the presentations in Refs.@46,49,50#,
where more details can be found.

The inner solution@i.e., for r ,R0(11z)] of the Stokes
equation~64! with viscosityh is given by

vW ,5(
l 51

` S ¹W w l
,1

l 13

2h~ l 11!~2l 13!
r 2¹W pl

,

2
l

h~ l 11!~2l 13!
rWpl

,D , ~D1!

with the velocity potential function

w l
,~r ,x,t !5 (

m52 l

l

w lm
, ~ t !Y lm~x!S r

R0
D l

, ~D2!

and the hydrostatic pressurep,5( l pl
,(r ,x,t) with
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pl
,~r ,x,t !5 (

m52 l

l

plm
, ~ t !Y lm~x!S r

R0
D l

. ~D3!

The outer solution can be obtained by performing the
placementl→2( l 11) in the formulas above. Thus,

vW .5(
l 51

` S ¹W w l
.2

l 22

2h l ~2l 21!
r 2¹W pl

.1
l 11

h l ~2l 21!
rWpl

.D .

~D4!

Here,

w l
.~r ,x,t !5 (

m52 l

l

w lm
. ~ t !Y lm~x!S R0

r D l 11

~D5!

and

pl
.~r ,x,t !5 (

m52 l

l

plm
. ~ t !Y lm~x!S R0

r D l 11

. ~D6!

The boundary conditions become

NW •vW ~rW !urW5RW 0(11z)5(
l ,m

H l

2h~2l 13!
R0plm

, ~ t !

1
l

R0
w lm

, ~ t !J Y lm~x! ~D7!

and

NW •¹W @NW •vW ~rW !#2¹W •vW ~rW !urW5RW 0(11z)

5(
l ,m

H l ~ l 11!

2h~2l 13!
plm

, ~ t !1
1

R0
2

l ~ l 21!w lm
, ~ t !J Y lm~x!.

~D8!

By comparing Eqs.~D7! and ~D8! with the right hand sides
of Eqs.~65! and ~67! one then obtains

plm
, 52 ṙ lmh

~2l 13!~ l 21!

l
, plm

. 5 ṙ lmh
~2l 21!~ l 12!

l 11
~D9!
t.

s.

ci
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and

w lm
, 5 ṙ lmR0

2 ~ l 11!

2l
, w lm

. 5 ṙ lmR0
2 l

2~ l 11!
. ~D10!

The stress vector associated with this velocity field is giv
by

PW 5PnNW 1PW t52NW p1hS ]vW

]r
2

vW

r
D 1

h

r
¹W ~rW•vW !.

~D11!

Here, the inner normal component is given by

PW n
,5PW n

,
„rW5~RW 01zRW 0!2

…

5(
l ,m

H 2
h

R0
2

l ~ l 21!w lm
, 1

l 324l 23

~ l 11!~2l 13!
plm

, J Y lm~x!.

~D12!

The outer normal component reads

PW n
.5PW n

,
„rW5~RW 01zRW 0!1

…

5(
l ,m

H 2
h

R0
2 ~ l 12!~ l 11!w lm

. 2
l 313l 22 l

l ~2l 21!
plm

. J Y lm~x!.

~D13!

Finally, the difference between the inside and outside tang
tial component is given by

PW t
,2PW t

.5(
l ,m

H 2
h

R0
@~ l 21!w lm

, 1~ l 12!w lm
. #

1
l ~ l 12!

~ l 11!~2l 13!
plm

, 2
~ l 221!

l ~2l 21!
plm

. J ¹W Y lm~x!.

~D14!
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